Exam 1, Topics 2.1-2.8, 3.1-3.4

- Sample space: find S, count number of outcomes
- Events: union, intersection, complements, Demorgan's law, mutually exclusive, independent
- Probability: $\mathrm{p}(\mathrm{A} \cup \mathrm{B}), \mathrm{p}\left(\mathrm{A}^{\prime}\right), \mathrm{p}(\mathrm{B} \mid \mathrm{A})$, $\mathrm{p}(\mathrm{A} \cap \mathrm{B})$, total probability rule, bayes’ theorem

Exam 1: Continued

- Counting techniques: Multiplication rule, permutation, combination, sample with or without replacement
- Probability distribution of r.v. X
- CDF of r.v. X
- $\mathrm{E}(\mathrm{X})$ and $\mathrm{V}[\mathrm{X}]$

Topics: 3.5-3.9:

Discrete probability distributions:
discrete uniform, bernoulli, binomial, geometric, negative binomial, hypergeometric, possion distributions.

Understand the experiement that these distributions applied to, know pmf, $E(X), \operatorname{var}(X)$, apply these distribution to solve the probability problems.

