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9-1 Hypothesis Testing
9-1.1 Statistical Hypotheses

Motivation: many problems in practice require that we decide
whether to accept or reject a statement, for example, in comparing
the mean of a population to a specified value.

Statistical hypothesis testing and confidence interval estimation of
parameters are the fundamental methods used at the data analysis

stage of a comparative experiment.

Definition

A statistical hypothesis is a statement about the parameters of one or more populations.




9-1 Hypothesis Testing
9-1.1 Statistical Hypotheses

For example, suppose that we are interested in the
burning rate of a solid propellant used to power aircrew
escape systems.

« Now burning rate is a random variable that can be
described by a probability distribution.

 Suppose that our interest focuses on the mean burning
rate (a parameter of this distribution).

 Specifically, we are interested in deciding whether or
not the mean burning rate i1s 50 centimeters per second.



9-1 Hypothesis Testing

9-1.1 Statistical Hypotheses
Two-sided Alternative Hypothesis

Hy: o = 50 centimeters per second  null hypothesis

H,: i # 50 centimeters per second  alternative hypothesis

One-sided Alternative Hypotheses

Hy: o = 30 centimeters per second Hy: o = 30 centimeters per second

or

Hy: << 30 centimeters per second Hi: = 30 centimeters per second



9-1 Hypothesis Testing

9-1.1 Statistical Hypotheses

Test of a Hypothesis

* A procedure leading to a decision about a particular
hypothesis

» Hypothesis-testing procedures rely on using the information
In a random sample from the population of interest.

« If this information is consistent with the hypothesis, then we
will conclude that the hypothesis is true; if this information is

Inconsistent with the hypothesis, we will conclude that the
hypothesis is false.



9-1 Hypothesis Testing

9-1.2 Tests of Statistical Hypotheses

Hy: o = 30 centimeters per second

Hy:w # 50 centimeters per second

Reject Hg Fail to Reject Hg Reject Hy
u= 50 cm/s u=50cm/s = 50 cm/s

48.5 50 51.5

Figure 9-1 Decision criteria for testing Hy:p = 50 centimeters per
second versus H,:u # 50 centimeters per second.

=1



9-1 Hypothesis Testing

9-1.2 Tests of Statistical Hypotheses

Definitions

Rejecting the null hypothesis A, when 1t 1s true 15 defined as a type | error.

Failing to reject the null hypothesis when it 1s false 1s defined as a type 1l error,




9-1 Hypothesis Testing

9-1.2 Tests of Statistical Hypotheses

Tahle 9-1 Decisions in Hypothesis Testing

Decision H, 1z True H, Is False
Fail to reject H; no error type 11 error
Reject H, type 1 error no error

a = P(type | error) = Plreject Hy when Hy 1s true)

Sometimes the type | error probability is called the
significance level, or the a-error, or the size of the test.



Recall: Example on the burning rate of a solid propellant used
to power aircrew escape systems.

Hy: o = 30 centimeters per second
Hy:w # 50 centimeters per second
Reject Hg Fail to Reject Hg Reject Hy
u= 50 cm/s u=50cm/s = 50 cm/s

=1

48.5 50 51.5



9-1 Hypothesis Testing

9-1.2 Tests of Statistical Hypotheses

a = P(X < 48.5 when p = 50) + P(X = 51.5 when p = 50)
The z-values that correspond to the critical values 48.5 and 51.5 are

48.5 — 50 51.5 — 50
I = — = —1.90 and Z; = — [.90
.79 } 0.79

Therefore

a=P(Z< —190)+ P(Z=>1.90) = 0.028717 + 0.028717

(.057454



9-1 Hypothesis Testing

af2 = 0.0287 II/_. f2 =0.0287

485 pn=52 E&l.5 T

Figure 9-2  The critical region for H, p = 30
versus Hy: w # Sl and n = 10,

a = Pltype I error) = Pireject i, when Hj, 1s true)

(9-3)




9-1 Hypothesis Testing

B = Pltype Il error) = F(fail to reject i, when Hj, is false) (9-4)

0.5
Under Hy:i =50  Under Hy:p = 52

0.5 ) Y _
= ‘f \ Figure 9-3 The
§°° IJ \ probability of type II
Z 03 i 11 error when p =52 and
3 l \ n=10.
o 0.2 \
(1

X



9-1 Hypothesis Testing

P =PH485 =X =51.5when p = 352)

The z-values corresponding to 48.5 and 51.5 when . = 52 are

48.5 — 52 . 3.5 — 52 .1
=079 —4.43 and I = = —0.63

[

Therefore

B=P(—443=7=—063)=P(Z=—063) — P(Z = —443)
= (.2643 — 0.0000 = 0.2643



FProbability density

9-1 Hypothesis Testing

Figure 9-4 The
probability of type Il
error when p =50.5
and n = 10.




9-1 Hypothesis Testing

= ¥ = 51.5 when p = 50.5)

B = P{48.]

As shown in Fig. 9-4, the z-values corresponding to 48.5 and 51.5 when = 50.5 are

i 51.5 — 50.5
z = —2.53 and Ty = 1.27
(.79 - . /4

Therefore

B=P-253=7=127)=P(Z=127) — P(Z= —2.53)
= ().8Y80 — 0.0057 = 0.8Y23



9-1 Hypothesis Testing

= X = 51.5 when p = 52)

o
|l
s
Je
(e
N

it

0.8

Under Hy: =50  Under Hyj:u = 52

=
)

Figure 9-5 The
probability of type Il
error when p=2andn
= 16.

Probability clensity
-
Y

=
M




9-1 Hypothesis Testing

When n = 16, the standard deviation of X 1s o/Vn =

corresponding to 48.5 and 31.5 when . = 32 are

48.5 — 52 _ 51.5 — 52
1T T 0605 —5.60 and z; = s —().80

Theretfore

B=P(—5.60 =Z=—080)=P(Z= —080) — P(Z= —5.60)
=0.2119 — 0.0000 = 0.2119



9-1 Hypothesis Testing

Acceptance Sample
Region Size ol Batp = 32 Bat = 5.3
48,5 <x =< 315 10 (L0376 (12643 (.8923
48 <x < 32 10 (L0114 (1.5000 (.9705
48.5 <x =< 315 16 (L0164 (121149 0.9445
48 < x < 32 16 (.0014 (15000 (.9018




9-1 Hypothesis Testing

Definition

The power of a statistical test is the probability of rejecting the null hypothesis H,
when the alternative hvpothesis is true.

» The power Is computed as 1 - 3, and power can be interpreted as
the probability of correctly rejecting a false null hypothesis. We
often compare statistical tests by comparing their power properties.

» For example, consider the propellant burning rate problem when
we are testing H , : u = 50 centimeters per second against H ; : p not
equal 50 centimeters per second . Suppose that the true value of the
mean Is u = 52. When n = 10, we found that = 0.2643, so the
power of thistestis1 - =1-0.2643 =0.7357 when u = 52.




9-1 Hypothesis Testing

9-1.3 One-Sided and Two-Sided Hypotheses

Two-Sided Test:
H.::.: |..|.

H|: JL = ARy

One-Sided Tests:

HII: L — Wy
Hytp = g

i

Or



9-1 Hypothesis Testing

Example 9-1

Consider the propellant burning rate problem. Suppose that if the burning rate 1s less than
30 centimeters per second, we wish to show this with a strong conclusion. The hypotheses
should be stated as

Hy: oo = 30 centimeters per second

Hy: << 50 centimeters per second

Here the critical region lies in the lower tail of the distribution of Y. Since the rejection of H,
1s always a strong conclusion, this statement of the hypotheses will produce the desired out-
come 1f Hy 1s rejected. Notice that, although the null hypothesis is stated with an equal sign, it
1s understood to include any value of . not specified by the alternative hypothesis. Therefore,
failing to reject Hy does not mean that i = 30 centimeters per second exactly, but only that we
do not have strong evidence in support of H,.



9-1 Hypothesis Testing

The bottler wants to be sure that the bottles meet the
specification on mean internal pressure or bursting strength,
which for 10-ounce bottles is a minimum strength of 200
nsi. The bottler has decided to formulate the decision
procedure for a specific lot of bottles as a hypothesis testing
problem. There are two possible formulations for this
problem, either

Hy: e = 200 psi or Hy: o = 200 psi
Hyo = 200 psi Hy: << 200 psi



9-1 Hypothesis Testing

9-1.4 P-Values in Hypothesis Tests

Definition

The P-value is the smallest level of significance that would lead to rejection of the
null hypothesis H;, with the given data.




9-1 Hypothesis Testing

9-1.4 P-Values in Hypothesis Tests

Consider the two-sided hypothesis test for burning rate

with n = 16 and o = 2.5. Suppose that the observed sample mean 1s x = 51.3 centimeters
per second. Figure 9-6 shows a critical region for this test with critical values at 51.3 and
the symmetric value 48.7. The P-value of the test is the & associated with this critical
region. Anv smaller value for o expands the critical region and the test fails to reject the
null hypothesis when ¥ = 31.3. The P-value is easy to compute after the test statistic i1s ob-
served. In this example

P-value = 1 — P(48.7 < X < 51.3)
48.7 — 50 51.3 — 50
=1—P( —<Z< = .—)
2

| — P(—2.08 < £ <
| — 0.962 = 0.038




9-1 Hypothesis Testing

9-1.4 P-Values in Hypothesis Tests

0.7

0.6

0.5

0.4

G

0.3

0.2

Figure 9-6 P-value 0.1
1= area of shaded 0
reglon when v = 31,3, 45 49 50 51 52




9-1 Hypothesis Testing

9-1.5 Connection between Hypothesis Tests and
Confidence Intervals

There is a close relationship between the test of a hypothesis about any parameter, say f, and
the confidence interval for 6. If [/, u] 1s a 100(]1 — @)% confidence interval for the parameter
f. the test of size « of the hypothesis

H.:.!H — Hn’j

will lead to rejection of Hj if and only 1f 8, 1s not in the 100{1 — «)% CI [I, u]. As an illus-
tration, consider the escape system propellant problem with ¥ = 51.3, o = 2.5, and n = 16.
The null hypothesis Hy: p = 30 was rejected, using o« = 0.05. The 93% two-sided CI
on . can be calculated using Equation 8-7. This CI is 51.3 £ 1.96(2.5/%/16) and this is
0075 = = 52,525, Because the value py, = 30 is not included in this interval, the null
hypothesis H: w = 50 is rejected.



N o g N w N P

9-1 Hypothesis Testing

9-1.6 General Procedure for Hypothesis Tests

From the problem context, identify the parameter of interest.

. State the null hypothesis, H, .

. Specify an appropriate alternative hypothesis, H,.
. Choose a significance level, .

. Determine an appropriate tst statistic.

. State the rejection region for the statistic.

. Compute any necessary sample guantities, substitute these into the

equation for the test statistic, and compute that value.

. Decide whether or not H, should be rejected and report that in the

problem context.



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean

We wish to test:

H[:.: 18 — | LY
Hi: i # g

The test statistic Is:

(9-8)




0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean

Reject H, If the observed value of the test statistic z IS
either:

2o > Zyp Or 2y < -2,
Fail to reject H, If

2y < Zy<Zyp



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

N(O,1)

Critical region - - Critical ragion
!

Accaptance b al?

Critical ragion
[o )
ragion

—Zg 0 Zap Z, 0 2y Z —Zg 0 Zy

i) i & icl

Acceptance
region

Acceptance
ragion

Figure 9.7  The distribution of Z, when H,: w = p, is true, with critical region for (a) the two-sided alternative H, : p # .,
(b) the one-sided alternative @ w > . and (c) the one-sided alternative H, @ p < p,



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-2

Aircrew escape systems are powered by a solid propellant. The burning rate of this pro-
pellant is an important product characteristic. Specifications require that the mean burning
rate must be 30 centimeters per second. We know that the standard deviation of burning
rate 1s ¢ = 2 centimeters per second. The experimenter decides to specify a type | error
probability or significance level of a = 0.05 and selects a random sample of n = 25 and
obtains a sample average burning rate of ¥ = 51.3 centimeters per second. What conclu-

stons should be drawn?



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-2

We may solve this problem by following the eight-step procedure outlined in Section 9-1 4.
This results in

. The parameter of interest is ., the mean burning rate.
2. Hy o = 50 centimeters per second

3. H;p # 30 centimeters per second

4. a = 0.05

5. The test statistic 1s

X MKy

U',-"'r \-fmﬁ

L



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-2

6.

Reject Hy if zg = 1.96 or if z; << —1.96. Note that this results from step 4, where we
specified a = 0.03, and so the boundaries of the critical region are at zy 5,5 = 1.96
ill‘JL‘] _:':'.':]25 - — 1,"}{",

L
[P
I
thn
=
Se—"
I

Conclusion: Since z; = 3.25 = 1.96, we reject Hy: o = 30 at the 0.05 level of
significance. Stated more completely, we conclude that the mean burning rate dif-
fers from 30 centimeters per second, based on a sample of 25 measurements. In

fact, there 1s strong evidence that the mean burning rate exceeds 30 centimeters
per second.



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean

We may also develop procedures for testing hypotheses on the mean g where the alter-
native hypothesis 1s one-sided. Suppose that we specify the hypotheses as

Hy: o= po

_ (9-11)
Hi:p = pg

[n defining the critical region for this test, we observe that a negative value of the test statistic
£, would never lead us to conclude that H: p = p; 1s false. Therefore, we would place the
critical region in the upper tail of the standard normal distribution and reject H;, if the com-

puted value of z, 1s too large. That 15, we would reject H if

(9-12)

-



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean (Continued)

as shown in Figure 9-7(b). Simularlv, to test

Hy: o = pg
Hi:p < pg (9-13)

we would calculate the test statistic £, and reject H;, if the value of z; is too small. That 1s, the
critfical region 1s in the lower tail of the standard normal distribution as shown n Figure

9-7(c), and we reject Hy if

T < —Z (9-14)



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.1 Hypothesis Tests on the Mean (Continued)

Null hypothesis: Hy: o= g

. X — g
Test statistic: Zn = —
a/\Vn
Alternative hypothesis Rejection criteria
Hyt e # g Zp > Zapa-1 T Zp < —Zypa-1
Hytp = g Zo = Zan—1

Hyop < pg Iy = " ZIga-l




0-2 Tests on the Mean of a Normal
Distribution, Variance Known

P-Values in Hypothesis Tests

The P-value 1s the smallest level of significance that would lead to rejection of the
null hypothesis H; with the given data.

2[1 — D|zp])]  for a two-tailed test: Hy: o = g Hi:p # Wy
P=41—dz) for a upper-tailed test: Hy: 0 = g Hi: = Wy (9-15)
D zg) tor a lower-tailed test: Hy: u = g Hi: <y




0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type Il Error and Choice of Sample Size
Finding the Probability of Type Il Error 3

Consider the two-si1ded |1_".'|"k“ll|'lk".“-ir-

Hy )b = g
Hy e # 1y

Suppose that the null hvpothesis 1s false and that the true value of the mean 15 . = w, + 8.
say, where & = 0. The test statistic £, 15

XN =y XM= +8) 3Vn
Ly = = —  — +
a/ Vi o Vi o

Therefore. the distribution of Z; when H, 1s true is

_ (8Vn -
Ly — N T| (D-16)



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type Il Error and Choice of Sample Size
Finding the Probability of Type Il Error 3

8vn 5vn




0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type Il Error and Choice of Sample Size
Finding the Probability of Type Il Error 3

Under Ho:p=pp,  Under Hj: p=p,

“Falz Q S 2

Figure 9-7 The distribution of Z, under H,; and H;



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type Il Error and Choice of Sample Size
Sample Size Formulas

For a two-sided alternative hypothesis:

T %
{fuﬁ + zp) 0°

a?

n == where &= p — g (9-19)




0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type Il Error and Choice of Sample Size
Sample Size Formulas

For a one-sided alternative hypothesis:

where 6= p — Wy (9-20)




0-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-3

Conzider the rocket propellant problem of Example 9-2. Suppose that the analyst wishes (o
design the test so that 1if the true mean burning rate differs from 30 centimeters per second by
as much as | centimeter per second. the test will detect this (1. reject Hy: o = 30) with a high
probability, say 0.90. Now, we note that ¢ = 2. E =5l —530=1,a=005and B =010
SINce Z,o = Igeps = 196 and zp =z = 125, the sample size required to detect this

departure from Hy: o = 30 15 found by Jiqununn Q-19 as

(Zapp + 22V 07 (196 + 1.28)72°
i = - — - = _I':

5 (17

The approximation is good here, since @(—z,» — 8Va/o) = (=196 — (1) 42/2) =
P(—5.20) = 0, which 1z amall relative to B.



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type Il Error and Choice of Sample Size

Using Operating Characteristic Curves

When performing sample size or type II error calculations, it i1s sometimes more conven-
ient to use the operating characteristic (OC) curves in Appendix Charts Vla and VIb.
These curves plot B as calculated from Equation 9-17 against a parameter d for various
sample sizes n. Curves are provided for both @ = 0.05 and o« = 0.01. The parameter d 1s

defined as

Tl N (]
- o T

d

(9-21)



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.2 Type Il Error and Choice of Sample Size

Using Operating Characteristic Curves

s0 one set of operating characteristic curves can be used for all problems regardless of the
values of g and o, From examining the operating charactenstic curves or Equation 9-17 and
Fig. 9-7. we note that

. The further the true value of the mean o is from pg. the smaller the probability of
tvpe 1 error B fora given i and a. That 15, we see that for a specihied sample size and
o large ditferences in the mean are easier to detect than small ones.

b

For a given & and e the probability of type 11 error B decreases as n mcreases. That
15, to detect a specthed difference & in the mean, we may make the test more power-
ful by increasing the sample size.



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

Example 9-4

Consider the propellant problem in Example 9-2. Suppose that the analyst is concerned about the prob-
ability of type 11 error if the true mean burning rate 1s . = 31 centimeters per second. We may use the
operating characteristic curves to find B. Notethat5 =51 =30 =1,n =250 =2, and « = (1.05. Then
using Equation 9-21 gives

el B
i = o _III' 2

and from Appendix Chart VIla, with n = 25, we find that B = 0.30. That is, if the true mean burning rate
15 = 31 centimeters per second, there is approximately a 30% chance that this will not be detected by
the test with n = 23.



0-2 Tests on the Mean of a Normal
Distribution, Variance Known

9-2.3 Large Sample Test

We have developed the test procedure for the null hypothesis H: . = ., assuming that the pop-

ulation is normally distributed and that & is known. In many if not most practical situations o~

will be unknown. Furthermore, we may not be certain that the population 1s well modeled by a

normal distribution. In these situations if # 1s large (sav n = 40)) the sample standard deviation s

can be substituted for o in the test procedures with little effect. Thus, while we have given a test

for the mean of a normal distribution with known o, it can be easily converted into a large-
sample test procedure for unknown o that is valid regardless of the form of the distribution
of the population. This large-sample test relies on the central limit theorem just as the large-
sample confidence interval on . that was presented in the previous chapter did. Exact treatment
of the case where the population is normal, o is unknown, and #» is small involves use of the
t distribution and will be deferred until Section 9-3.



0-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

9-3.1 Hypothesis Tests on the Mean
One-Sample t-Test

Null hypothesis: Hy: o= g

_ X— g
Test statistic: Ty = —
S5/ \'n
Alternative hypothesis Rejection criteria
Hy: TR TF) fg = fgpa—1 O Mg < —fg2a—|
Hytw = g fg = o1

Hi:p < o fo < —fan—1




0-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

9-3.1 Hypothesis Tests on the Mean

Figure 9-9 The reference distribution for H,: p = py with critical
region for (a) Hy: pw# pg, (b) Hy: uw> pg, and (c) Hy: p < .



0-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-6

The iereased availabihty of ight matenals with lngh strength has revolutionized the design and
manufacture of golf clubs, particularly drivers. Clubs with hollow heads and very thin faces can
result in much longer tee shots, especially for plavers of modest skills. This 1s due partly to the
“spring-like effect”™ that the thin face mmparts to the ball. Firing a golt ball at the head of the club
and measuring the ratio of the outgoing velocity of the ball to the incoming velocity can quantb
this spring-like effect. The ratio of velocities 15 called the coeflicient of restitution of the club. An
experiment was performed in which 15 drivers produced by a particular club maker were selected
al random and their coethicients of resttution measured. In the expeniment the golf balls were
fired from an air cannon so that the incoming velocity and spin rate of the ball could be precisels
controlled. Tt of interest to determine i there 15 evidence (with ee = 0,035 ) 1o support a claim that
the mean coeflicient of restitution exceeds 0,82, The observations {ollow:

0.8411 08191 08182 08125 0.8750

0.8580 0.8532  0.8483 0.8276  0.7983

0E042  0.8T730 D282 08350 OEGGD



0-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-6

The sample mean and sample standard deviation are ¥ = 083725 and 5 = 0.02456. The normal
probability plot of the data in Fig. 9-9 supports the assumption that the coefhicient of restitution 1s
normally distributed. Since the objective of the experimenter 15 to demonstrate that the mean co-
ellicient of restitution exceeds 082, a one-sided alternative hypothesis is appropriate.

The solution using the eight-step procedure for hypothesis testing 15 as follows:

.  The parameter of interest 15 the mean coeflicient of restitution, .

2 Hy =082

3. Hpow = 0082 We want to reject Hy if the mean coefhicient of restitution exceeds (.82,
4. =005

5. The test statistic 1s

T - I:-ll-|'_|

Ip = =
i

0. ]';-.'q."_i'».'"q.il. L‘r“ || I - |r|'|_.::,_.:__|_|_ = .76



0-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-6 .
Figure 9-10 22
Normal probability a0
plot of the ¥ e
coefficient of s o
restitution data * a0
from Example 9-6. o

0.78 0.83 0.88
Coafficiant of rastitution



0-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-6

Computations: Since ¥ = 083725, 5 = 0.02456, g = 082, and n = 15, we have

— — 3 T
II'II = = J iJ

0.02456/V13

el Bt

8. Conclusions: Siece f, = 2.72 = 1.761. we reject Hy and conclude at the 0.05 level of
significance that the mean coeflicient of restitution exceeds (00.82,



0-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

0-3.2 P-value for a t-Test

The P-value for a t-test iIs just the smallest level of significance
at which the null hypothesis would be rejected.

To illustrate, consider the #-test based on 14 degrees of freedom in Example 9-6. The
relevant critical values from Appendix Table 1V are as follows:
2024 2977 3326 3787 4140

Critical Value: 0.258  0.692  1.345 1.761  2.145
5 0.01 0.005 0.0025 0.001 00005

Tail Area: 040 025 0.10  0.08 .02

Notice that t; = 2.72 in Example 9-6, and that this is between two
tabulated values, 2.624 and 2.977. Therefore, the P-value must be
between 0.01 and 0.005. These are effectively the upper and lower
bounds on the P-value.



0-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

9-3.3 Type Il Error and Choice of Sample Size

The type Il error of the two-sided alternative (for example)
would be

r:tf_n ||FJ' F “}

B — P{_me_".-_”_|
= .:.:f-’_-_n—l}

=
— P{_'rt-!;'r_"-'-n—l =

I =
I



0-3 Tests on the Mean of a Normal
Distribution, Variance Unknown

Example 9-7

Consider the golf club testing problem from Example 9-6. If the mean coefficient of restitution exceeds
(1.2 by as much as 0.02, is the sample size n = 15 adequate to ensure that H;: w = 0.82 will be rejectad
with probability at least (.87

To solve this problem, we will use the sample standard deviation s = 0.02456 to estimate o. Then
d = |6/ = 0.02/0.02456 = (L.8]. By referring to the operating characteristic curves in Appendix
Chart Vllg (for e = 0.03) with & = 0.81 and » = 15, we find that B = 0.10, approximately. Thus, the
probability of rejecting H,: w = 0.82 1f the true mean exceeds this by 0.02 is approximately | — B =
I — 010 = 0.90, and we conclude that a sample size of n = 13 is adequate to provide the desired
Sensitvity.



9-5 Tests on a Population Proportion

9-5.1 Large-Sample Tests on a Proportion

Many engineering decision problems include hypothesis testing
about p.

Hy: p = pq

Hy:p # po

An appropriate test statistic is

X — npyg

=
" npoll — po) (9-32)

and reject Hy: p = py if

:|‘:| - :u:q_."_-' ar :D G



9-5 Tests on a Population Proportion

Example 9-10

A semiconductor manufacturer produces controllers used in automobile engine applications.
The customer requires that the process fallout or fraction defective at a critical manufacturing
step not exceed 0.05 and that the manufacturer demonstrate process capability at this level of
quality using a = 0.05. The semiconductor manufacturer takes a random sample of 200
devices and finds that four of them are defective. Can the manufacturer demonstrate process
capability for the customer?

We may solve this problem using the cight-step hypothesis-testing procedure as follows:

1. The parameter of interest is the process fraction defective p.
2. Hyp =005
3

. Hp:p<0.05
This formulation of the problem will allow the manufacturer to make a strong claim
about process capability 1f the null hypothesis Hy: p = 0.05 1s rejected.

4. a=0.05



9-5 Tests on a Population Proportion

Example 9-10
5. The test statistic 1s (from Equation 9-32)

-

X — npg

B "\-"".f.i'l.l'hj.':] — f}|j|:|

where x = 4, n = 200, and pg = 0.05,
'Eh R.C_i':'i:T HD: J,I'J — ””5 Ilf:,:, < _:':'.DS — _l{""l::'

7. Computations: The test statistic 1s

4 — 200(0.05) )

:” — : = .,- = — ] ':'}?"
V/200(0.05)(0.95)

8. Conclusions: Since z; = —1.95 << —z,45 = —1.645, we reject H; and conclude that the
process fraction defective p is less than 0.03. The P-value for this value of the test statistic
zp1s P = 0.0256, which is less than e = 0.05. We conclude that the process is capable.



9-5 Tests on a Population Proportion

Another form of the test statistic Z, Is

i)

X/n — pq P — py

Ly = or le —

Vool — po)/n Vpoll = po)/n



9-5 Tests on a Population Proportion

9-5.2 Type Il Error and Choice of Sample Size

For a two-sided alternative

,

i — P+ zun Vpoll — polin i — P — Zen Vol — polin
B:(h(ﬁ. P 2 j., Po) )_(D(I. P~ w2 f...f o) ) -
Vpll — p)/n Vp(l — p)/n

If the alternative Is p < p,

bt

0o — 7 II"'." ”"1 S i '|. ,.";r
B=1- (]}(F.. Pt PO (9-35)
AY ‘,r}lz | — 2 JH,; !

If the alternative is p > p,

w—p + 2. Npall — pp)/n
g = (]}(;.. / o Pol Po) 9.36)
"".,rll”[] — f}_]..-"'rur.i'




9-5 Tests on a Population Proportion

9-5.3 Type Il Error and Choice of Sample Size

For a two-sided alternative

ra;z Vol — po) + 2 x-'mr
_f‘;l =

9.2
7 — Po (9-37)

For a one-sided alternative

[%H’DU — po) + zpVpll —Plr
H —

(9-38
P — Po 7-38)




9-5 Tests on a Population Proportion

Example 9-11

Consider the semiconductor manufacturer from Example 9-10. Suppose that its process fall-

out 1s really p = 0.03. What 1s the B-error for a test of process capability that uses n = 200
and e = 0.057

The B-error can be computed using Equation 9-33 as follows:

0.05 — 0.03 — (1.645)V/0.05{0.95)/200

@ _ =1 — ®(—=0.44) = 0.67
B v0.03(1 — 0.03)/200 ‘ ']

Thus, the probability 1s about 0.7 that the semiconductor manufacturer will fail to con-
clude that the process 1s capable if the true process fraction defective 1s p = 0.03 (3%). That
1s, the power of the test against this particular alternative 1s only about 0.3. This appears to be
a large B-error (or small power), but the difference between p = (.05 and p = 0.03 is fairly
small, and the sample size n = 200 1s not particularly large.



9-5 Tests on a Population Proportion

Example 9-11

Suppose that the semiconductor manufacturer was willing to accept a B-error as large as
(.10 1f the true value of the process fraction defective was p = 0.03. If the manufacturer con-
tinues to use a = 0.035, what sample size would be required?

The required sample size can be computed from Equation 9-38 as follows:

[.645V0.05{0.95) + 1.28Vv0.03(0.97) |-
0.03 — 0.05

n

I

832

where we have used p = 0.03 in Equation 9-38. Note that n = 832 is a very large sample size.
However, we are trying to detect a fairly small deviation from the null value p; = 0.03.



