
Chapter 7: Sampling Distributions and Point Estimation of
Parameters

Topics:

I General concepts of estimating the parameters of a population or a
probability distribution

I Understand the central limit theorem

I Explain important properties of point estimators, including bias,
variance, and mean square error
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Overview
I Identify a population of interest

—-for example, UNM freshmen female students’ weight, height or
entrance GPA.

I Population parameters
—-unknown quantities of the population that are of interest, say,
population mean µ and population variance σ2 etc.

I Random sample
—-Select a random or representative sample from the population.
—-A sample consists random variables Y1, · · · ,Yn, that follows a
specified distribution, say N(µ, σ2)

I Statistic: a function of radom variables Y1, . . . ,Yn, which does not
depend on any unknown parameters

I Observed sample: y1, y2, · · · , yn are observed sample values after data
collection
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I We cannot see much of the population
—-but would like to know what is typical in the population
— The only information we have is that in the sample.

Goal: want to use the sample information to make inferences about the
population and its parameters.

I Statistical inference is concerned with making decisions about a
population based on the information contained in a random sample
from that population.

Figure : Population, sample and statistical inference
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Point estimation

Suppose our goal is to obtain a point estimate of a population parameter,
i.e. mean, variance, based a sample x1, . . . , xn.

I Before we collected the data, we consider each observation as a
random variable, i.e. X1, . . . , Xn.

I We assume X1, . . . ,Xn are mutually independent random variables.

Point estimator: a point estimator is a function of X1, . . . ,Xn.
Point estimate: a point estimate is a single numerical value of the point
estimator based on an observed sample.
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I Population mean: µ

I Sample mean: Ȳ =
∑n

i=1 Yi/n

I Estimate of sample mean: the value of Ȳ computed from data
ȳ =

∑n
i=1 yi/n

I Population variance: σ2

I Sample variance: S2 = 1
n−1

∑n
i=1(Yi − Ȳ )2

I Estimate of sample variance: the value of S2 computed from data
s2 = 1

n−1

∑n
i=1(yi − ȳ)2

I Population standard deviation: σ

I Sample standard deviation (Standard error): S

I Estimate of standard error: s, the value of S computed from data
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Table : Commonly seen parameters, statistics and estimates:

Parameters Statistic Estimate
Describe a popn Describe a random sample Describe an observed

sample
µ Ȳ ȳ
σ2 S2 s2

σ S s
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Example

Table 6.5 contains a second example of multivariate data taken from an
article on the quality of different young red wines in the Journal of the
Science of Food and Agriculture (1974, Vol. 25) by T.C. Somers and M.E.
Evans. The authors reported quality along with several other descriptive
variables. We are interested in quality and PH values for a sample of their
wines.

winequality <- c(19.2, 18.3, 17.1, 15.2, 14.0, 13.8, 12.8,

17.3, 16.3, 16.0, 15.7, 15.3, 14.3, 14.0,13.8, 12.5, 11.5,

14.2,17.3,15.8)

PH<-c(3.85,3.75,3.88,3.66,3.47,3.75,3.92,3.97,3.76,3.98,

3.75,3.77,3.76,3.76,3.90,3.80,3.65,3.60,3.86,3.93)

I Give an estimate for the mean of wine quality rate (µ).

I Give an estimate for the variance of wine quality rate (σ2).

I Give an estimate for the correlation of wine quality and PH.
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Recall that Correlation between two sample data {x1, . . . , xn} and
{y1, . . . , yn}:

rxy =

∑n
i=1(yi − ȳ)(xi − x̄)√∑n

i=1(yi − ȳ)2
√∑n

i=1(xi − x̄)2

measure linear relationship between x and y .
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R codes to find the answers:

mean(winequality)

[1] 15.22

var(winequality)

[1] 3.992211

cor(winequality,PH)

[1] 0.3492413

I Give an estimate for the mean of wine quality rate (µ).
From R output, the estimate for the mean of wine quality rate (µ) is
x̄ = 15.22

I Give an estimate for the variance of wine quality rate (σ2).
From R output, the estimate for the variance of wine quality rate (σ2)
is s2 = 3.99

I Give an estimate for the correlation of wine quality and PH.
From R output, the estimate for the correlation of wine quality and
PH is 0.3492413.
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Sampling distribution

Sampling distribution: probability distribution of a given statistic based on
a random sample
—-Statistic is also a r.v.
—-Sampling distribution is in contrast to the population distribution
Want to know the sampling distribution of X̄

I standard error (SE): the standard deviation of the sampling
distribution of a statistic

I Standard error of the mean (SEM): is the standard deviation of the
sample-mean’s estimator
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If X1, . . . ,Xn are observations of a random sample of size n from normal
distributions N(µ, σ2) and X̄ = 1

n

∑n
i=1 Xi is the sample mean of the n

observations. We have

SEX̄ = s/
√
n

where
s is the sample standard deviation (i.e., the sample-based estimate of the
standard deviation of the population)
n is the size (number of observations) of the sample.
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Central limit theorem (CLT)

If X1, . . . ,Xn is a random sample of size n taken from a population or a
distribution with mean µ and variance σ2 and if X̄ is the sample mean,
then for large n,

X̄ ∼ N(µ, σ2/n)
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Standardization

If X1, . . . ,Xn is a random sample of size n taken from a normal population
with mean µ and variance σ2 and if X̄ is the sample mean, then,

X̄ ∼ N(µ, σ2/n).

We may standardize X̄ by subtracting the mean and dividing by the
standard deviation, which results in the variable

Z =
X̄ − µ
σ/
√
n

and
Z ∼ N(0, 1)
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illustration of CLT

I Consider random variables Xi ∼ Uniform(0, 1) distribution
—- any value in the interval [0, 1] is equally likely
—- µ = E (X ) = 1/2, and σ2 = Var(X ) = 1/12, so the standard
deviation is σ =

√
1/12 = 0.289.

I Draw a sample of size n
—- the standard error of the mean will be σ/

√
n

—- as n gets larger the distribution of the mean will increasingly
follow a normal distribution.
Illustration:

1. generate unifrom random sample of size n

2. calculate sample mean ȳ

3. repeat for N = 10000 times

4. plot those N means, compute the estimated SEM
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True SEM = 0.2887 , Est SEM =  0.2868

n = 1
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Figure : illustration of CLT, notice even with samples as small as 2 and 6 that the
properties of the SEM and the distribution are as predicted
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illustration of CLT

In a more extreme example, we draw samples from an Exponential(1)
distribution (µ = 1 and σ = 1), which is strongly skewed to the right.

f (x) = e−x , x > 0

Notice that the normality promised by the CLT requires larger samples
sizes, about n ≥ 30, than for the previous Uniform(0,1) example, which
required about n ≥ 6.
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True SEM = 1 , Est SEM =  0.9884

n = 1
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Figure : illustration of CLT, notice that the normality promised by the CLT
requires larger samples sizes, about n ≥ 30
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Note that the further the population distribution is from being normal, the
larger the sample size is required to be for the sampling distribution of the
sample mean to be normal.
——-n ≥ 30, normal approximation will be satisfactory regardless of the
shape of the population
——n < 30, CLT work if the distribution of the population is not severely
nonnormal.
Question: If the population distribution is normal, what’s the minimum
sample size for the sampling distribution of the mean to be normal?
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Example:

Suppose that a r.v. X has a continuous uniform distribution

f (x) =

{
1/2 4 ≤ x ≤ 6

0 otherwise

Find the distribution of the sample mean of a random sample of size
n = 40.
Solution: X has a continuous uniform distribution,

µ =
4 + 6

2
= 5, σ2 =

(6− 4)2

12
= 1/3

Since n = 40 is large, according to CLT,

X̄ ∼ N(µ, σ2/n) = N(5, 1/120)
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More on sampling distribution

I If X1, . . . ,Xn are observations of a random sample of size n from
normal distributions N(µ, σ2) and X̄ = 1

n

∑n
i=1 Xi is the sample mean

of the n observations. Let S2 = 1
n−1

∑n
i=1(Xi − X̄ )2 is the sample

variance then
I X̄ ∼ N(µ, σ2/n)
I (n − 1)S2/σ2 ∼ χ2(n − 1)
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I Two independent populations with means µ1 and µ2 and variances σ2
1

and σ2
2. If X̄1 and X̄2 are the sample means of two independent

random samples of size n1 and n2 from these two populations, then
the sampling distribution of

X̄1 − X̄2 ∼ N(µ1 − µ2, σ
2
1/n1 + σ2

2/n2).

If the two populations are normal, the sampling distribution of
X̄1 − X̄2 is exactly normal.

I If n is large, the distribution of

P̂ ∼ N

(
p,

p(1− p)

n

)
.
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Example: The effective life of a component used in engine is a r.v. The
life time of Old component is with a fairly normal distribution µ1 = 5000
hours, and σ1 = 40 hours; new component is with µ2 = 5050 hours, and
σ2 = 30 hours. We randomly select n1 = 16 old components and n2 = 25
new components from the process. What is the probabilities that the
difference in the two sample means X̄2 − X̄1 is at least 25 hours?

Solution:
µ2 − µ1 = 5050− 5000 = 50√
σ2

1

n1
+
σ2

2

n2
=

√
402

16
+

302

25
=
√

136

Since the distribution of life time of Old component is fairly normal,
n1 = 16 is ok to do CLT approximation; n2 = 25 is close to 30, therefore,
we can apply CLT to approximate the distribution of difference in sample
means,

X̄2 − X̄1 ∼ N(50, 136)
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P(X̄2 − X̄1 ≥ 25) = P(Z ≥ 25− 50√
136

) = P(Z ≥ −2.14) = 0.9838

the probabilities that the difference in the two sample means X̄2 − X̄1 is at
least 25 hours is 0.9838.
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Bias of an estimator

I Unbiased estimator:
——-The point estimator of θ̂ is an unbiased estimator for the
parameter θ if

E (θ̂) = θ

I Biased estimator:
——The point estimator of θ̂ is a biased estimator for the parameter
θ if

E (θ̂) 6= θ

—— E (θ̂)− θ is called the bias of the estimator of θ.
I Mean squared error:

MSE (θ̂) = E [(θ̂ − θ)2]

= E [θ̂ − E (θ̂) + E (θ̂)− θ]2

= E [(θ̂ − E (θ̂))2] + (E (θ̂)− θ)2

= V (θ̂) + (bias[θ̂])2
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MSE (θ̂) = V (θ̂) + (bias[θ̂])2.

——-If the estimator is unbiased, we usually select the estimator with the
smallest variance.
——-If the estimator is biased, we usually select the estimator with the
smallest mean squared error.
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