Chapter 5: Joint Distribution

Two discrete random variables

Recall for a discrete random variable X, the pmf for X = {x1,x2,- -+ , xn}

satisfies
» f(x;) >0
> i f(x) =1
» f(x;) = P(X =x)

Now consider two random variables, X, Y, their joint pmf satisfies the
following conditions

> fx y(x,y) >0 forall x,y.

> D2y xy(xy)=1

>

fxy(x,y)=P(X=xand Y =y)=P(X =x,Y =y).
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Example 1: Suppose you toss a coin 2 times. Let random variable X

1 if first toss is a head
X = e g ) )
0 if first toss is a tail

and let Y be the random variable with number of heads in the 2 tosses.
» possible values of X ={0,1}, Y ={0,1,2}
Y
0 1 2
X |0]f(0,0) f(0,1) f£(0,2)
11]f(1,0) f(1,1) f(1,2)

£(0,0) = P(X = 0,Y = 0) =
P(1st toss is a tail, no heads in two tosses) = P(TT) =1/4
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» f(0,0)=P(X=0,Y=0)=

P(1st toss is a tail, no heads in two tosses) = P(TT) =1/4
» £(0,1)=P(X=0,Y=1)=

P(1st toss is a tail, 1 heads in two tosses) = P(TH) = 1/4
> £(0,2)=P(X=0,Y =2) =

P(1st toss is a tail, 2 heads in two tosses) = 0
» f(1,0)=P(X=1,Y=0)=

P(1st toss is a head, no heads in two tosses) = 0
» f(L,1)=P(X=1,Y=1)=

P(1st toss is a head, 1 heads in two tosses) = P(HT) =1/4
> f(1,2)=P(X=1,Y =2) =

P(1st toss is a head, 2 heads in two tosses) = P(HH) =1/4
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Marginal pmfs

The individual probability distribution of a random variable is referred to
as its marginal probability distribution.

> In general, the marginal probability distribution of X can be
determined from the joint probability distribution of X and other
random variables.
—— For example, to determine P(X = x), we sum P(X =x,Y =y)
over all points in the range of (X, Y) for which X = x.

(x)=P(X =x)=> fxy(x,y)

» to determine P(Y = y), we sum P(X = x, Y = y) over all points in
the range of (X, Y) for which Y =y.

A(Y)=P(Y =y)=> fy(xy)
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Example 2: Based on the joint mass function of X and Y in example 1,

find the marginal pmfs of X and Y.
Y

0 1 2 fx (x)
X[ 0 [1/4 1/4 0 1)2
0 1/4 1/4 1/2
fr(y) | 1/4 1/2 1/4
fX(O):P(XZO) (O 0)_|_f(0 1)+f(0 2)_1/2
(1) = P(X = 1) = £(1,0) + F(1,1) + £(1,2) = 1/2
fx(0)+1x(1) =1/2+1/2=1
fy(0) = P(Y = 0) = £(0,0) + £(1,0) = 1/4
fy(l)=P(Y =1)=1(0,1)+f(1,1)=1/2
fy(2) = P(Y =2)=f(0,2) +f(1,2) =1/4
fr(0) + fy(1) + A (2) = 1
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Practice: a joint distribution function is defined as follows:

X
1
1.5
15
2.5
3.0

y fxy(xy)
1 1/4

2 1/8

3 1/4

4 2k

5 k

Determine the following:

(a) Find k so that the joint function fx y(x,y) satisfies the properties of a

joint probability mass function.

(b) Marginal probability mass function of X and Y.

(c) Find P(X > 1.8, Y > 4.7).
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Covariance and Correlation

Expected value of a function of two random variables:

ux = E[X] = ZZXfX,Y(Xa)/) = fox(x)
py = E[YT=Y ) yixy(y) =D yfr(y)

ox = V(X) = E(X?) — E?*(X),0y = V(Y) = E(Y?) — E?(Y)
Covariance: the covariance between two random variables X and Y,
denoted as cov(X,Y) or ox y, is

ox,y = E[(X = px)(Y — py)l = E(XY) — pxpy

Note: covariance is a measure of linear relationship between random

variables.

E(XY) = Z nyfx,y(x,y)
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Correlation: the correlation between two random variables X and Y/,
denoted as pxy, is

COV(X, Y) oxy
pxXY = = :
Var(X)Var(Y) oxoy

For any two random variable X and Y, —1 < px y < 1.
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Example 3:

Find E(X), E(Y), V(X), V(Y), E(XY),cov(X,Y) and px y of the
following joint distribution function.

Y
0 1 2 fx(X)
X| 0 1/4 1/4 0 1/2
1 0 1/4 1/4 1/2
W) 14 12 14
E(XY) = ZZXWX:Y(X,Y)
x .y
= 0%0x%7(0,0)4+0x1x7(0,1)+0%2x£(0,2)
+ 1%0%f(1,0)+1*x1xf(1,1)+1%2xf(1,2)
_1,,,1.3
R
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Recall Example 1: Suppose you toss a coin 2 times. Let random variable X

1 if first toss is a head
X = e g ) :
0 if first toss is a tail

and let Y be the random variable with number of heads in the 2 tosses.
» X is a bernoulli distribution with p =1/2

E(X)=1/2,V(X)=1/2x(1-1/2)=1/4
or using joint distribution function table,
E(X)=0%1/24+1x1/2=1/2
» Y is a binomial distribution with n=2,p=1/2
E(Y)=2%x1/2=1,V(Y)=2%1/2%(1—-1/2)=1/2

1 1
v cov(X,Y) = E(XY) — E(X)E(Y) = % —Sel=g
1
> pxY = covX.Y) __ _ =/2/2 =10.707

\/Var(X) Var(Y) \/7 \/7
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Practice: suppose r.v X and Y has the following joint distribution

Y
7 9 11 fx(X)
X 1 02 0 0 0.2
2 0 06 O 0.6
3 0 0 02 02
f(y) 02 06 02

Find correlation of X and Y.
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5-1 Two Discrete Random Variables

5-1.3 Conditional Probability Distributions

Given discrete random variables X and Ywith joint probability mass function f(x, ¥)
the conditional probability mass function of ¥ given X = x 1s

Trz) = fyylx, ¥)ifylx)  for fylx) = 0 (5-3)




5-1 Two Discrete Random Variables

5-1.3 Conditional Probability Distributions

Because a conditional probability mass function fy [ v) 1s a probability mass func-
tion for all v in R,, the following properties are satisfied:

() fr») =0
2) Y fr) =1
(3) PY=ylX=x =fyd» (5-4)




5-1 Two Discrete Random Variables

Definition: Conditional Mean and Variance

The conditional mean of ¥ given X' = x, denoted as E{¥|x) or py,. is

E(Y|x) = X vivi(y) (5-5)

-1-.

.. . .. . 2 .
and the conditional variance of ¥ given X = x, denoted as F(¥|x) or 0¥, is

V(¥lx) = 2 (v = mo) fra(0) = 2 ¥fly) — piis

-II ! -1..




-1 Two Discrete Random Variabl

5-1.4 Independence

For discrete random variables X and Y, if any one of the following properties 1s true,
the others are also true, and X and ¥ are independent.

(1) fyyle.v) = filx) fy(y) forall x and y

(2} fyioly)=f¥(y) forall xand y with fy(x) = 0

(3) fy,(x) = fr(x) forallxandywithfy(y) =0

(4) P(X= 4, Y€ B)= P(X € 4)P(Y £ B) for any sets 4 and B in the range
of Xand T, respectively. (3-6)




Example, practice problem continued

r.vs X and Y has the following joint distribution

X
1
1.5
15
2.5
3.0

y
1

2
3
4

5

fx,v (X, ¥)
1/4
1/8
1/4
1/4
1/8

» find conditional probability distribution of Y given X = 1.5
» find conditional probability distribution of X given Y =2

> find E[Y|X = 1.5]

» are X and Y independent?

» find cov(X,Y)



Recall binomial distribution
» 1st trial, Fail or Success, 2nd trial Fail or Success, ..... nth trial Fail or
Success
» Trials are independent

» Let X be number of successes, X ~ Bin(n, p)
——p is the probability of success
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Now with more possible outcomes
Example: Digital channel of 20 bits received.

» Assume that each individual bit is classified as excellent (E), good
(G), fair (F) or poor (P) with probabilities of 0.6, 0.3, 0.08 and 0.02
respectively.

» Assume each individual bits are independent.

» What is the probability that among 20 bits received, 14 are excellent,

3 are good, 2 are fair and 1 is poor?

20!
P(14E,3G,2F,1P) = Wﬁg!“o.ﬁ”o.ﬁo.oﬁo.ozl = 0.0063
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5-1 Two Discrete Random Variables

5-1.6 Multinomial Probability Distribution

Suppose a random experiment consists of a series of n trials. Assume that

(1) The result of each trnal 1s classified into one of k classes.

(2) The probability of a trial generating a result in class 1, class 2, ..., class k
15 constant over the trials and equal to p, pa. ..., ps. respectively.

(3) The trials are independent.

The random varnables X, X, ... . X} that denote the number of trials that result in
class 1, class 2, ..., class k, respectively, have a multinomial distribution and the
joint probability mass function is

n'

P{.Tl =_JL'],.T3 ZIE,...,.TI:_.Z_II}}Z o |Ff1ﬁ’§:=“};’i§i (5-12)
X147, Xk~

forxy +x +--+xp=nandpy +p + -+ p= 1.




5-1 Two Discrete Random Variables

5-1.6 Multinomial Probability Distribution

Each trial in a multinomial random experiment can be regarded as either generating or not
generating a result in class 7, foreach i = 1., 2,. .., k. Because the random variable X is the
number of trials that result in class i, X, has a binomial distribution.

It X,. X, ..., A have a multinomial distribution, the marginal probability distribu-
tion of X, 1s binomial with

E(X;)=np; and V(X)) = np(l — p;) (3-13)




Example continued:

(1) marginal distribution of X, (Good bits) is binomial with n = 20 and
p=03

E(X2) =20%0.3 =6, V(X)=20%03x(1—0.3) =42

~ 20!
~ 6121121

P(X> =6, X3 = 2) 0.350.0820.6212

P(X, = 12, X, = 6)
P(X; = 6)
20!

1216!2!

20! 26 714
6!14!0'3 0.7

— 1.44%10°°

P(X1 =12]X; = 6) =

0.6'20.3°0.12
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5-5 Linear Combinations of Random
Variables

Definition

Given random variables X}, X;, ..., X, and constants ¢}, ¢, ..., ¢

P!l
Y= i+ X5 4+ + EP‘TP (5-34)
15 a linear combination of X}, X5, ..., X,
Mean of a Linear Combination
IfYy= L"l.-:fl + L"E.TE + o+ EPEP’
E(Y)=cE(X)) + c:E(X;) + - + EPE[.‘('P} (5-35)




5-5 Linear Combinations of Random
Variables

Variance of a Linear Combination

If X}, X;. ... X, are random variables, and ¥ = ¢ X} + ;X5 + - + ¢, X, then in
general

NY) = elVX) + alX) + - + V) + 2> D cigeov(XL X)) (5-36)

<

[f X, X5, ..., A are independent,

NY) = V(X)) + a3H(Xa) + - + VX)) (5-37)




5-5 Linear Combinations of Random
Variables

Example 5-33

An important use of equation 5-37 is in error propagation that is presented in the following example.

A semiconductor product consists of three layers. If the variances in thickness of the first, second. and
third layers are 235, 40, and 30 nanometers squared. what 1s the variance of the thickness of the final

product.

Let X, X, X5, and X be random variables that denote the thickness of the respective layers, and the final
product. Then

X=X + X+ X
The variance of X is obtained from equaion 5-39
XY = VX)) + V) + VG =25 + 40 + 30 = 95 nm?

Consequently, the standard deviation of thickness of the final product is 952 = 9.75 nm and this shows
how the variation in each layer is propagated to the final product.



» Independent — cov(X,Y) =10
» but cov(X, Y) = 0 doesn’'t imply independence of X and Y

x y fxy(xy)

2 4 1/5
-1 1 1/5
Example: 0 0 1/5
1 1 1/5
2 4 1/5
cov(X,Y) =0,
but

fxy (x,y) # tx(x)fy(y)
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5-5 Linear Combinations of Random
Variables

Mean and Variance of an Average

X=X+ + - +X)/pwithEX)=pfori=1,2,....p

E(X)

L (5-38a)

if X}, Xa, ..., X, are also independent with V(X)) = o fori = 1,2, ..., p,
9

o

2

X)) = (5-38b)




5-5 Linear Combinations of Random
Variables

Reproductive Property of the Normal Distribution

If X, X5, ..., X, are independent, normal random vanables with E(X) = p, and
VX)) = ot fori =1,2,...,p,

X

F=cXi+ 5+ +¢ .

P
15 a normal random varable with

E(Y)=cip) + capr + - + o,
and

YY) = cfo] + dos + - + clo; (5-39)




5-5 Linear Combinations of Random
Variables

Example 5-34

Let the random variables X, and X, denote the length and width, respectively, of a manufactured part.
Assume that X is normal with E(X|) = 2 centimeters and standard deviation 0.1 centimeter and that
X, 1= normal with E(X;) = 5 centimeters and standard deviation 0.2 centimeter. Also, assume that X,
and X, are independent. Determine the probability that the perimeter exceeds 14.5 centimeters.

Then, ¥ = 2X, + 2X; 15 a normal random variable that represents the perimeter of the part. We
obtain, £(¥) = 14 centimeters and the variance of ¥is

MF)=4x0.17+4 x 02" =02
MNow,

P(Y = 14.5) = P[(Y — pploy > (145 — 14)/vD2]
= P(Z>1.12) =013



Practice: soft-drink cans are filled by an automated filling machine and the

standard deviation is 0.5 fluid ounce. Assume that the fill volumes of the

cans are independent normal r.vs.

(a) what is the standard deviation of the average fill volume of 100 cans?

(b) if the mean fill volume is 12.1 ounces, what is the probability that the
average fill volume of the 100 cans is below 12 ounces?

(c) what should the mean fill volume equal so that the probability that
the average of 100 cans is below 12 fluid ounces is 0.0057
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