4-1 Continuous Random Variables

Previously, we discussed the measurement of the current in a thin copper wire. We noted that
the results might difter slightlv in day-to-day replications because of small variations n vari-
ables that are not controlled in our experiment—changes in ambient temperatures, small 1m-
purities in the chemical composition of the wire, current source drifts, and so forth.

Another example 1s the selection of one part from a day’s production and very accuratelv
measuring a dimensional length. In practice. there can be small variations in the actual
measured lengths due to many causes, such as vibrations, temperature fluctuations, operator
differences, calibrations, cutting tool wear, bearing wear, and raw material changes. Even the
measurement procedure can produce variations in the final results.



Discrete rv Continuous rv

Range of rv Finite or countably finite  An interval of real
numbers
Example Toss a coin 20 times Measure the lifetime of

an electronic component

rv: X Number of heads Lifetime in hours

Range of X {0,1,2,.....20} {x: 0<x<infinity}

pmf pdf



4-2 Probability Distributions and
Probability Density Functions

¥

Figure 4-1 Density function of a loading on a long,
thin beam.



4-2 Probability Distributions and
Probability Density Functions

i)

Figure 4-2 Probability determined from the area
under f(x).



4-2 Probability Distributions and
Probability Density Functions

Definition

For a continuous random variable X, a probability density function i1s a function
such that

(1y flx)=20

| flxydx =1

=g

(2)

b

(3) Pa=X=b=

i

for anv @ and b (4-1)

flx) dx = area under f{x) from a to b




Review pmf

For a discrete random variable X with possible values x|, x, ..., x,, a probability
mass function 1s a function such that

(1) flx)=0

(2) H flxy=1

=

3) flx)=PX =x) (3-1)




4-2 Probability Distributions and
Probability Density Functions

Fix)

Figure 4-3 Histogram approximates a probability
density function.



4-2 Probability Distributions and
Probability Density Functions

If X is a continuous random variable, for any x; and x5,




4-2 Probability Distributions and
Probability Density Functions

Example 4-2

Let the continuous random variable X" denote the diameter of a hole drilled in a sheet metal
component. The target diameter is 12.5 millimeters. Most random disturbances to the process
result in larger diameters. Historical data show that the distribution of X can be modeled by a
probability density function f(x) = 20e™2% 7123 x = 12.5.

[t a part with a diameter larger than 12.60 millimeters 1s scrapped, what proportion of
parts is scrapped? The density function and the requested probability are shown in Fig. 4-5. A
part 1s scrapped it X' = 12.60. Now,

ot o
o

fxydy = | 200720120 gy = —e 7201230 = () 135

| 2.6

P(Y > 12.60) =

[2.6 | 2.6



4-2 Probability Distributions and
Probability Density Functions

#- .
i I

12.5 12.6 x

Figure 4-5 Probability density function for Example 4-2.



4-2 Probability Distributions and
Probability Density Functions

Example 4-2 (continued)

What proportion of parts 1s between 12.5 and 12.6 millimeters? Now,

| 2.6
' 12.6
T W T - F oo k W | —Mifvr—=125 -
P(125 <X < 12.6) = J f(x)dv = —e?m129) — () 865
. | 2.5
2.5
Because the total area under f{x) equals 1, we can also calculate P(12.5 < X' < 12.6) =

| — P(X > 12.6) = 1 — 0.135 = 0.865.



4-3 Cumulative Distribution Functions

Definition

The cumulative distribution function of a continuous random variable X 1s
X
Flx)=PX=x)= | flu)du (4-3)

=

for —oo < x < =,




4-3 Cumulative Distribution Functions

Example 4-4

For the drilling operation in Example 4-2. F(x) consists of two expressions.

and for 12.5 = x

Theretore.
Flx) =

Figure 4-7 displays

Flx)=0 for x<12.5
.'-l"
Flx) = 20~ 21230 gy
12.5
_ | _ ,20G—125)

0 x <
| — 'L}—_-lllt.'.'—l_-..“l] 125 =y

a graph of F{(x).



Fix)

0 12.5

Figure 4-7 Cumulative distribution function for Example
4-4.



Practice: The pdf for ar.v X Is given by
f(x) = ¢ x"2, 0<x=2

(a) Find c
(b) Find p(X<3)

(c) Find CDF of f(x)

(d)Use CDF to find pdf of X




4-4 Mean and Variance of a Continuous
Random Variable

Definition

Suppose X 15 a continuous random variable with probability density function fix).
The mean or expected value of X, denoted as . or E(X), is

o]
r

n=EX) = | xf(x)dx (4-4)

=00

The variance of X, denoted as F(X) or o, is

] o

(x — p,}':.'f{x} dx =

.‘r':_'f{x} dx — p?

ot = VX)) =

=g =
—

- . . i)
The standard deviation of Y150 = Vo'




4-4 Mean and Variance of a Continuous
Random Variable

Example 4-6
For the copper current measurement in Example 4-1, the mean of X is
20
i 2“
E(X) = | xf(x)dx = 0.05x°/2 | =10
. ()
0
The variance of X 1s
20
" 20
VIX) = | (x = 10Y%(x)dx = 0.05(x — 10)/3 | = 33.3




4-4 Mean and Variance of a Continuous
Random Variable

Expected Value of a Function of a Continuous
Random Variable

If X 1s a continuous random variable with probability density function f{x),

E[h(X)] = ‘ h(x)f (x) dx (4-5)

[

-




4-4 Mean and Variance of a Continuous
Random Variable

Example 4-8

For the drilling operation in Example 4-2. the mean of X' is

b o

v 2020123 gy

E(X) =

xflx) dv =

2.5

|...

P ®

5

[ntegration by parts can be used to show that

—20(x—12.5) |=
. i r— 17 5§ i - _ - -
E(X) = —xe 2007123 — 5 = 12.5 + 0.05 = 12.55
< 12.5
The variance of X is
X)) = (x — ]2,55:]:}'[.1':] dx
12.5

Although more difficult, integration by parts can be used two times to show that F(.X) = 0.0025.



4-5 Continuous Uniform Random
Variable

Definition

A continuous random variable X with probability density function
fixy=1/b—a), a=x=b (4-6)

15 a continuous uniform random variable,




4-5 Continuous Uniform Random
Variable

fix)

1
b-a

Figure 4-8 Continuous uniform probability density
function.



4-5 Continuous Uniform Random
Variable

Mean and Variance

If X 15 a continuous uniform random vanable overa = x = b,

L= E(X) = @+ b) and of = MX) = (b —a)

2 12

(4-T)




4-5 Continuous Uniform Random
Variable

Example 4-9

et the continuous random variable X denote the current measured in a thin copper wire in
milliamperes. Assume that the range of X 1s [0, 20 mA]. and assume that the probability den-
sitv function of Xis f{x) = 0.05.0 = x = 20.

What is the probability that a measurement of current is between 5 and 10 milliamperes?
The requested probability is shown as the shaded area in Fig. 4-9.

10
P(S <X < 10) = | flx)dx

= 5(0.05) = 0.25
The mean and variance formulas can be applied with @ = 0 and 5 = 20. Therefore,
E(X)=10mA and VX)=207/12 = 3333 mA°

(onsequently, the standard deviation of X 15 5.77 mA.



4-5 Continuous Uniform Random
Variable

fix)

Q.05

Figure 4-9 Probability for Example 4-9.



4-5 Continuous Uniform Random
Variable

The cumulative distribution function of a continuous uniform random variable 1s ob-
tained by integration. It a << x << b,

X

Fix) = | 1/(b —a)du =x/{b—a) —a/(b — a)

Therefore, the complete description of the cumulative distribution function of a continuous
uniform random variable 1s

() X< a

A

Flx)=q(x—a)/(b—a) a=x<Dh

| b

A



4-6 Normal Distribution

Definition

A random variable X with probability density function

—fr—p)
flx)= 7= 2o —0 < x < 0 (4-8)

is a normal random variable with parameters ., where —ce << g < w0, and o = (.

Also,
EX)=pn and V(X)=o (4-9)

and the notation M., o®) is used to denote the distribution. The mean and variance
of X are shown to equal w and o2, respectively, at the end of this Section 5-6.




4-6 Normal Distribution

Fiix) _o2=1

Figure 4-10 Normal probability density functions for
selected values of the parameters u and 2.



4-6 Normal Distribution

Some useful results concerning the normal distribution

For any normal random variable,

Pl —o <X < p+ o) = 0.6827
Pl — 20 < X < p + 20) = 0.9545

-

Pl — 3o < X < p + 30) = 09973



4-6 Normal Distribution

Definition : Standard Normal

A normal random variable with

7

pw=10 and o =1

1s called a standard normal random variable and 1s denoted as Z.
The cumulative distribution function of a standard normal random vanable 15
denoted as




4-6 Normal Distribution

Example 4-11

Assume Z is a standard normal random variable. Appendix Table Il provides probabilities of
the form P(Z = z). The use of Table Il to find P(Z = 1.5) is illustrated in Fig. 4-13. Read
down the z column to the row that equals 1.5, The probability is read from the adjacent col-
umn, labeled 0.00, to be 1.93319.

The column headings refer to the hundredth’s digit of the value of z in P(Z = z). For ex-
ample, P{Z = 1.53) is found by reading down the z column to the row 1.5 and then selecting
the probability from the column labeled 0.03 to be 0.93699,

- P(£=21.5)=%(1.5)

= shadad area z 0.00 0.01 0.02 0.03

0| 050000 0503929 050328 051197

1.B [ 093319 0.92448 093574 0.93699

N 1.5 z

Figure 4-13 Standard normal probability density function.



4-6 Normal Distribution

[t X'1s a normal random variable with E(X) = p and F(X) = a”, the random variable

Z=- (4-10)

15 a normal random vanable with E(Z) = 0 and F(Z) = 1. That 1s, Z 1s a standard
normal random variable,




Example: Let Z be a standard normal rv
N(0,1), determine the following

(1)p(Z <£1.26)

(2)p(Z>1.26)

(3)p(Z>-1.26)

(4)P(-1.26<Z<1.26)

(5) Find value z such that p(Z>z) =.05
(6) Find z such that p(-z<Z<z)=.95




4-6 Normal Distribution

Example 4-13

Suppose the current measurements in a strip of wire are assumed to follow a normal distribu-
tion with a mean of 10 milliamperes and a variance of 4 (milliamperes)®. What is the proba-
bility that a measurement will exceed 13 milliamperes?

Let X denote the current in milliamperes. The requested probability can be represented as
P(X = 13). Let Z = (X — 10)/2. The relationship between the several values of X and the

transformed values of Z are shown in Fig. 4-15. We note that X' = 13 corresponds to £ = 1.5,
Therefore, from Appendix Table 11,

PX=13)=PZ=15)=1—-PZ=15)=1—10.93319 = 0.06681

Rather than using Fig. 4-15, the probability can be found from the inequality X" = 13. That 1s,

| (XY —10) (13 = 10)> )
PIX > 13) = P AP -)z P(Z > 1.5) = 0.0668]

7

=



4-6 Normal Distribution

Distribution of Z 7\

015 z

Distribution of X /\
/ \ 4 791011 13 16 =
\ 34  _15-05005 15 3 =

10 13 X

Figure 4-15 Standardizing a normal random variable.



4-6 Normal Distribution

To Calculate Probability

Suppose X is a normal random variable with mean p and variance o, Then,

X
P(.‘fﬂ.r}zP( < ) P(Z=z) (4-11)

X —
[ b 15 the ;-value

where Z 15 a standard normal random variable, and z =

obtained by standardizing X.
The probability is obtained by entering Appendix Table Il with z = (x — p)/o.




4-6 Normal Distribution

Example 4-14

Continuing the previous example, what is the probabilitv that a current measurement is be-
tween Y and I milliamperes? From Fig. 4-13, or by proceeding algebraicallv, we have

PO<X<11)=P(9— 10)/2 < (X —10)/2 < (11 — 10)/2)

=P(-05<Z<05)=PZ<05)—PZ< —05)
= 0.69146 — 0.30854 = 0.38292



4-6 Normal Distribution

Example 4-14 (continued)
Determine the value for which the probability that a current measurement is below
this value 1s (1.8, The requested value 1s shown graphically in Fig. 4-16. We need the value of
x such that P(X << x) = 0.98. By standardizing, this probability expression can be written as

P(X < x) = P((X — 10)/2 < (x — 10)/2)
= P(Z < (x — 10)/2)
= .98

Appendix Table 11 1s used to find the z-value such that P(£ << z) = 0.98. The nearest proba-
bility from Table II results in

P(Z < 2.05) = 0.97982
Therefore, (x — 10)/2 = 2.05, and the standardizing transformation is used in reverse to solve

for x. The result 1s

x = 2(2.05) + 10 = 14.1 milliamperes



4-6 Normal Distribution

Example 4-14 (continued)

10 *
Figure 4-16 Determining the value of x to meet a
specified probabillity.



4-7 Normal Approximation to the
Binomial and Poisson Distributions

- Under certain conditions, the normal
distribution can be used to approximate the
binomial distribution and the Poisson
distribution.



4-7 Normal Approximation to the
Binomial and Poisson Distributions

0.25

Figure 4-19 Normal / \ iy
approximation to the 0.20 ; y
binomial.

.15

iy
_J_,./ \_H_

o 1 2 3 4 & & 7 & 9 10



4-7 Normal Approximation to the
Binomial and Poisson Distributions

Example 4-17

[n a digital communication channel, assume that the number of bits received in error can be
modeled by a binomial random variable, and assume that the probability that a bit is received
in error is | X 1072, If 16 million bits are transmitted, what is the probability that more than
150 errors occur?

et the random variable X denote the number of errors. Then X is a binomial random vari-
able and

| 50
PIX>150)=1—-Px=150)=1~- >,

( 1 6.000.000
X

) ( ][}_5]"'|: | — ]n—ﬁ] 1 6.000.000 —x

=1

Clearly, the probability in Example 4-17 1s difficult to compute. Fortunatelv, the normal
distribution can be used to provide an excellent approximation in this example.



4-7 Normal Approximation to the
Binomial and Poisson Distributions

Normal Approximation to the Binomial Distribution

If X is a binomial random variable, with parameters n and p

‘_E:"_
Z=—2_"P (4-12)
vip(l — p)

15 approximately a standard normal random wvariable. To approximate a binomal
probability with a normal distribution a continuity correction 1s applied as follows

x+05—mn
F{_YE.T}=P[J;’-_:_T+D.5}EF’(ZE P)

vap(l — p)

and

I

x—035—np
Px=X)=Px—-05=X)=F A
\Vip(1 — p)

The approximation is good for np = 5 and n(l — p) = 5.




4-7 Normal Approximation to the
Binomial and Poisson Distributions

Example 4-18

The digital communication problem in the previous example 1s solved as follows:

, X =160 150 — 160
| V160(1 — 107~ \V160(1 — 1079

= P(Z > —0.79) = P(Z < 0.79) = 0.785

Because np = (16 X 10°)(1 X 1077) = 160 and n(1 — p) is much larger, the approximation
1s expected to work well in this case.



4-7 Normal Approximation to the
Binomial and Poisson Distributions

hyvpergometric 7 binomial = normal
distribution no_ 0.1 distribution np > 3 distribution
N n(l —p)=>3

Figure 4-21 Conditions for approximating hypergeometric
and binomial probabillities.



4-7 Normal Approximation to the
Binomial and Poisson Distributions

Normal Approximation to the Poisson Distribution

If X'1s a Poisson random variable with E(X') = A and V[X') = A,

X—A
i — (4-13)
VA

1s approximately a standard normal random vanable. The approximation is good for

A>3




4-7 Normal Approximation to the
Binomial and Poisson Distributions

Example 4-20

Assume that the number of asbestos particles in a squared meter of dust on a surface follows
a Poisson distribution with a mean of 1000, 1f a squared meter of dust is analyzed, what is the
probability that less than 930 particles are found?

This probability can be expressed exactly as

a50  _—1000__ 1000
M .

PLY =950) = 3 -

x=0U

x!

The computational difficulty is clear. The probability can be approximated as

950 — ](HH})

PX=x)=P (Z =
' SO

= P(Z = —1.58) = 0.057



4-8 Exponential Distribution

Definition

The random variable X that equals the distance between successive events of a
Poisson process with mean A > 0 is an exponential random variable with parame-
ter A. The probability densitv function of X 1s

flx)=Ae™ for 0=x< (4-14)




4-8 Exponential Distribution

Mean and Variance

If the random variable X has an exponential distribution with parameter A,

(4-15)

B 1 ) _ oy = L
lL—E':X}_;L and o —H-T}_f

[t is important to use consistent units in the calculation of probabilities, means, and variances
involving exponential random variables. The following example illustrates unit conversions.



4-8 Exponential Distribution

Example 4-21

In a large corporate computer network, user log-ons to the system can be modeled as a Pois-
son process with a mean of 25 log-ons per hour. What is the probability that there are no log-
ons in an interval of 6 minutes?

Let X denote the time in hours from the start of the interval until the first log-on. Then, X
has an exponential distribution with A = 25 log-ons per hour. We are interested in the proba-
bility that X exceeds 6 minutes. Because A 1s given in log-ons per hour, we express all time
units in hours. That is, 6 minutes = 0.1 hour. The probability requested is shown as the shaded
area under the probability density function in Fig. 4-23. Therefore,

oo

P(X > 0.1) = | 25¢™ " dx = 72D = 0.082

(.1



4-8 Exponential Distribution

‘1. o
_ll_:l_l

.1 X

Figure 4-23 Probabillity for the exponential distribution in
Example 4-21.



4-8 Exponential Distribution

Example 4-21 (continued)

Also, the cumulative distribution function can be used to obtain the same result as follows:
P(X 011) =1 - F(U,l) — {J—E:‘«[n.lj

An identical answer is obtained by expressing the mean number of log-ons as 0.417 log-
ons per minute and computing the probability that the time until the next log-on exceeds 6
minutes. Trv it.
What is the probability that the time until the next log-on is between 2 and 3 minutes?
Upon converting all units to hours,
(.05 )
[ (.03

P(0.033 < X < 0.05) = | 25¢ % dx = —e™ 7 = 0.152
. (0033
(.033



4-8 Exponential Distribution

Example 4-21 (continued)

An alternative solution is
P(0.033 < X < 0.05) = F(0.05) — F(0.033) = 0.152

Determine the interval of time such that the probability that no log-on occurs in the 1
val is 0.90. The question asks for the length of time x such that P(X = x) = 0.90. Now,

P(X > x) = e " = 0.90
Take the (natural) log of both sides to obtain —25x = In(0.90) = —0.1054. Therefore,

x = 0.00421 hour = 0.25 minute



4-8 Exponential Distribution

Furthermore, the mean time until the next log-on is
w = 1/25 = 0.04 hour = 2.4 minutes
The standard deviation of the time until the next log-on is

o = 1/25 hours = 2.4 minutes



Practice: Suppose that calls to a radio
line follow a poisson process with an
average of 1/15 calls/minute

(1) What Is the mean time between calls

(2) Let x=time between two calls, what is the
probability that there are no calls within 30
minutes

(3) Probability at least one call in a 10-minute
Interval

(4) What is the probability that the first call
occurs within 10 to 15 minutes?



4-8 Exponential Distribution

Our starting point for observing the system does not matter.

*An even more Iinteresting property of an exponential random
variable is the lack of memory property.

In Example 4-21, suppose that there are no log-ons
from 12:00 to 12:15; the probability that there are no
log-ons from 12:15 to 12:21 is still 0.082. Because we
have already been waiting for 15 minutes, we feel that
we are “due.” That is, the probability of a log-on in the
next 6 minutes should be greater than 0.082. However,
for an exponential distribution this is not true.



4-8 Exponential Distribution

Example 4-22

Let X denote the time between detections of a particle with a geiger counter and assume that
X has an exponential distribution with A = 1.4 minutes. The probability that we detect a par-
ticle within 30 seconds of starting the counter is

P(X < 0.5 minute) = F(0.5) = 1 — ¢~ "4 =030
[n this calculation, all units are converted to minutes. Now, suppose we turn on the geiger

counter and wait 3 minutes without detecting a particle. What is the probability that a particle
is detected in the next 30 seconds?



4-8 Exponential Distribution

Example 4-22 (continued)

Because we have already been waiting for 3 minutes, we feel that we are “due.”’
1s, the probability of a detection in the next 30 seconds should be greater than 0.3. Howze
for an exponential distribution, this is not true. The requested probability can be expre
as the conditional probability that P(X <2 3.5|.X > 3). From the definition of conditi
probability,

X = 3) = P3<<X <35 ) /P(X = 3)
where

P3<X<35)=F35 —F3)=[1—e ] = [1 = ¥ = 0.0035
and



4-8 Exponential Distribution

Example 4-22 (continued)

Therefore,

P(X < 3.5

X >3)=0.035/0.117 = 0.30

After waiting for 3 minutes without a detection, the probability of a detection in the next 30
seconds is the same as the probability of a detection in the 30 seconds immediately after start-
ing the counter. The fact that you have waited 3 minutes without a detection does not change
the probability of a detection in the next 30 seconds.



4-8 Exponential Distribution

Example 4-22 illustrates the lack of memory property of an exponential random vari-
able and a general statement of the property follows. In fact, the exponential distribution is the
only continuous distribution with this property.

Lack of Memory Property

For an exponential random varable X,

PX<ti +8|X>1)=PX<t) (4-16)




4-8 Exponential Distribution

fix)

A

C D
£a £1 1+ 2 X

Figure 4-24 Lack of memory property of an Exponential
distribution.



