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3.1 Discrete Random Variables

 Present the analysis of several
random experiments

* Discuss several discrete random
variables that frequently arise In
applications



Example 3.1

A voice communication system for a business
contains 48 external lines. At a particular
time, the system is observed, and some of
the lines are being used.

et the random variable X denote the number
of lines in use. Then, X={0, 1, 2....48}

When the system Is observed, If 10 lines are
In use, x = 10.



3-2 Probability Distributions and
Probability Mass Functions
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Figure 3-1 Probability distribution for bits in error.
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Figure 3-2 Loadings at discrete points on a long, thin
beam.



Probability distribution of a
random variable: A description of
the probabilities associated with
the possible values of X

specified by a list of probabilities
or formula.



For a discrete random variable X with possible values x|, x, ..., x,, a probability
mass function 1s a function such that

() flx)=0
@ 3 )=
(3) flx)=PX=x) (3-1)




Example: Verify the following
function f(x) is a pmf and find
probabilities P(X<2), P(X>0).

.
3/8 1/8 2/8 1/8

f(x) 1/8




Solution: Verify pmf
(1) f(x)>0
(2) &

Zf(x)_1/8+3/8+1/8+2/8+1/8 1

(3) f(x) p(X =)
p(X2)=p(X=-2o0r-1lorQorl
or2)=1/8+...1/8 =1

p(X>0) = p(X=1or 2) =2/8+1/8
= 3/8



Example: Verify pmf, find probabilities
3,,1
f(X)= ' x=012---
(x) =( 4)( 4)

(1) f(x) >0, obviously
2 331 31, 3,1 1, . 31
( ) Zf(x)_z+z(z)+z(z) +---_Z(1+Z+(Z) +---)_Z—1—1

1_=
4

(3)  f(x)=p(X=x)

p(X=2)=f(2)= 31y._3
4 4 04

p(X<2) =f(0)+(1)+f(2)=63/64



Practice: Wafer Contamination

« et the random variable X denote the
number of semiconductor wafers that need
to be analyzed in order to detect a large
particle of contamination.

« Assume that the probability that a wafer
contains a large particle i1s .01 and that the
wafers are independent.

» Determine the probability distribution of X



3-3 Cumulative Distribution Functions

Definition

The cumulative distribution function of a discrete random variable X, denoted as

Flx), 1s

Fx)=PX=x)= > f(x)

For a discrete random variable X, F{x) satisfies the following properties.
(1) Flx)=PX=x)= E.I‘.:i'l‘-'ir (x.)
(2) 0=Fx)=1
(3) Ifx =y, then Flx) = Fly) (3-2)




Example 3-8

Suppose that a day’s production of 850 manufactured parts contains 50 parts that do not con-
form to customer requirements. Two parts are selected at random, without replacement, from
the batch. Let the random variable X equal the number of nonconforming parts in the sample.
What is the cumulative distribution function of X7

The question can be answered by first finding the probability mass function of X,

s00 799

P(X = 0) = — + — = 0.886
850 849
_ 800 50
PX=1)=2+—+—=0.111
850 849
50 49
P(X =2) = —+ — = 0.003
850 849

Therefore.
F(0) = P(X =0) = 0.886
F(1)=PX=1)=0.886 + 0.111 = 0.997
F(2)=PX=2)=1

The cumulative distribution function for this example is graphed in Fig. 3-4. Note that
Fix) is defined for all x from —= << x <C % and not only for 0, 1, and 2.



Example 3-8
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Figure 3-4 Cumulative distribution function for
Example 3-8.



Practice: Write the CDF for the
following pmf

.
3/8 1/8 2/8 1/8

f(x) 1/8




Given the distribution 0 X <1
function, determine 7 1<x<4
the probabilities. 0=+ 9  4<x<T
(1) p(X<4)=F(4)=.9 1 7<x
(2)p(X>7)=1-p(X<7)=1-1=0
(3)p(X<5)=F(5)=.9
(4)p(X>4)=1-p(X<4)=1-.9=.1
(S)p(XL2)=F(2)=.7
(6)p(1<X<4)=p(X<4)-p(X<1)=F(4)-0=.9
(7)p(1<X<4)=p(X<d)-p(X<1)=F(4)-f(4)-
F(1)=.7-.7=0




Practice: Given

0 X <1
F(X)=<.5 1<x<3
k1 3<X

Find (a) p(X<3), (b) p(X<2),
(€) p(1<X <2), (d) p(X>2)



3-4 Mean and Variance of a Discrete
Random Variable

Definition

The mean or expected value of the discrete random variable X, denoted as p or

E(X),1s
w=EX)= > xflx) (3-3)
The variance of X, denoted as o’ or F{X), is

o’ = NX) = EX — p) = E (x — p)flx) = E.‘r':_'f{x} — p?

X

. e o
The standard deviation of XY1s o0 = Vo




3-4 Mean and Variance of a Discrete
Random Variable
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Figure 3-5 A probability distribution can be viewed as a loading
with the mean equal to the balance point. Parts (a) and (b)

llustrate equal means, but Part (a) illustrates a larger variance.



3-4 Mean and Variance of a Discrete
Random Variable

72 4 l & & 10 0 2 4 i & & 10

(a) ()

Figure 3-6 The probability distribution illustrated in Parts (a)
and (b) differ even though they have equal means and equal
variances.



Example 3-11

The number of messages sent per hour over a computer network has the following distribution:

x = number of messages | 10 | [ | 12 | 13 ‘ 14 | 15

1) | (.08 | (.15 | (0.30) | ().20) | ().20) | (.07

Determine the mean and standard deviation of the number of messages sent per hour.

E(X) = 10(0.08) + 11(0.15) + - + 15(0.07) = 12.5
X) = 10%0.08) + 11%(0.15) + - + 15%0.07) — 12.5> = 1.85

e

VIX) = V185 = 1.

)

fid

a



Practice:

At a raffle, 1500 tickets are sold at $2
each for four prizes of $1500, $250,
$150 and $75. You buy a ticket, what is
the expected value of your gain? What Is
the variance of your gain?




3-4 Mean and Variance of a Discrete
Random Variable

Expected Value of a Function of a Discrete
Random Variable

If X 1s a discrete random variable with probability mass function f{x),

E[h(X)] = 2, hlx)f(x)

(3-4)




Notes:

« E(C)=C, where C Is a constant
 Var (C) =0

« E(C X) =C E(X)

« Var(CX) = C? Var(X)



Example: Two new product designs are to be
compared on the basis revenue potential.
marketing feels that the revenue from design A
can be predicted quite accurately to be $3
million . The revenue potential of design B Is
more difficult to assess. Marketing concluded
that there Is a probability of .3 that the revenue
from design B will be $7 million, but there is a
.7 probability that the revenue will be only $2
million. Which design do you prefer?



Solution: Let X and Y denote the revenue
from design A and B respectively.

E[X ] = $3million, V[I[X]=0
E[Y]=7=<.3+2x<.7 =3%3.5million
VIY]= E(Y2) —u?

= > y*f(x)—u-?
—=7°<.3+2°=<.7 —3.5°

— 5.25million °

o = /5.25 = $2.29million




A Random variable X that
assumes each of the values

X1 X0 Xy with equal
probability 1/n i1s frequently of
Interest.



3-5 Discrete Uniform Distribution

Definition

A random variable X has a discrete uniform distribution 1f each of the n values 1n
Its range, say, X1, X2, ... . X;. has equal probability. Then,

fx;) = 1/n (3-5)




3-5 Discrete Uniform Distribution

Example 3-13

The first digit of a part’s serial number 1s equally likely to be any one of the digits 0 through 9.
[f one part is selected from a large batch and X 1s the first digit of the serial number, X has a dis-
crete uniform distribution with probability 0.1 for each value in R = {0, 1, 2,..., 9}. That is,

for each value in R. The probability mass function of X'is shown in Fig. 3-7.



3-5 Discrete Uniform Distribution

Figure 3-7 Probability mass function for a discrete uniform
random variable.



3-5 Discrete Uniform Distribution

Mean and Variance

Suppose X 1s a discrete uniform random variable on the consecutive integers
aa+ l.a+ 2,...,b, fora = b. The mean of X 15

b+ a
The vanance of X 1s
h—a+ 1¥ =1
o = (b ) (3-6)




Proof:

u — E X T (X))
1

— (a+((a—+1) +---b)
b—a + 1

o a1 (b—a +1(a + b)
b—a + 1 2
a—+ b

2



2 B 1 2 2 | 2
ZX:X f(x)_leb_aJrl(a +(a+1)°+---b%)

__ {[I’+--+(@a-1D°+a” +---+b"]
b—a+l

—[1° +---+(a-D°T}

122092 4.2 = n(n+1)6(2n+1)

o :szf(x)—uz

~(b-a+1)° -1
12




Practice: Thickness measurements of a
coating process are made to the nearest
hundredth of a milimeter. The thickness
measurements are uniformly distributed
with values .10, .11, .12, .13, .14, .15.
Determine the mean and variance of the
coating thickness for this process.




3-6 Binomial Distribution

Random experiments and random variables

Flip a coin 10 times. Let X' = number of heads obtained.

A worn machine tool produces 1% defective parts. Let X' = number of defective parts
in the next 25 parts produced.

Each sample of air has a 10% chance of containing a particular rare molecule. Let
X = the number of air samples that contain the rare molecule in the next 18 samples
analyzed.

Of all bits transmitted through a digital transmission channel, 10% are received in
error. Let X' = the number of bits in error in the next five bits transmitted.



3-6 Binomial Distribution

Random experiments and random variables

5. A multiple choice test contains 10 questions, each with four choices, and you guess
at each question. Let X' = the number of questions answered correctly.

[n the next 20 births at a hospital, let X' = the number of female births.

&

7. Of all patients suffering a particular illness, 35% experience improvement from a
particular medication. In the next 100 patients administered the medication, let X' =
the number of patients who experience improvement.



Bernoulli Distribution:

e X has a bernoulli distribution if it results In
one of the two possible outcomes, called
success and farlure

« X~Bern (p), X=number of success, p=
probability of success

p(X =x)=f(x)=p*@-p) ", x=01
* E[X]=p
* Var[X]=p(1-p)



Example: Flip a coin once.
X=number of success (heads),

p=1/2

- -

(x) 1/2 1/2

E[X]=1/2
Var[X]=1/2(1-1/2)=1/4



3-6 Binomial Distribution

Definition

A random experiment consists of n Bernoulli trials such that

(1) The trials are independent

(2) Each trial results in only two possible outcomes, labeled as “success™ and
“failure™

(3) The probability of a success in each trial, denoted as p, remains constant

The random variable X that equals the number of trials that result in a success
has a binomial random variable with parameters 0 < p < landn = 1,2, .... The
probability mass function of X 1s

flx) = C)pru PP x=01,...n (3-7)




3-6 Binomial Distribution
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Figure 3-8 Binomial distributions for selected values of
n and p.



3-6 Binomial Distribution

Example 3-18

Each sample of water has a 10% chance of containing a particular organic pollutant. Assume
that the samples are independent with regard to the presence of the pollutant. Find the proba-
bility that in the next 18 samples, exactly 2 contain the pollutant.

Let X = the number of samples that contain the pollutant in the next 18 samples analvzed.
Then X'is a binomial random variable with p = 0.1 and n = 18.
Therefore,

P(X =2) = ('f) (0.1)7(0.9)

I8
an(j ) = 18!/[2! 16!] = 18(17)/2 = 153. Therefore,

P(Y = 2) = 153(0.1)(0.9)"° = 0.284



3-6 Binomial Distribution

Example 3-18
Determine the probability that at least four samples contain the pollutant. The requestec
probability 1s

18 18
PX=4)= > ( ){{1.1)-*(0.@1)”—-*

AN
However, it is easier to use the complementary event,

18

X

Pz =1 -rx<a=1- 3 (oo

=1 —1[0.150 + 0.300 + 0.284 + 0.168] = 0.098

Determine the probability that 3 = X' << 7. Now

8]

PB=X<T)= Z(lf)(u.|)-*{uhujm—f

x=3

= 0.168 + 0.070 + 0.022 + 0.005

= 0.265



3-6 Binomial Distribution

Mean and Variance

[f X 15 a binomial random variable with parameters p and n,

p=EX)=np and o = VX)) = ap(l — p) (3-8)




3-7 Geometric and Negative Binomial
Distributions

Example 3-20

The probability that a bit transmitted through a digital transmission channel is received in
error is 0.1. Assume the transmissions are independent events, and let the random variable X
denote the number of bits transmitted until the first error.

Then, P(X = 5) is the probability that the first four bits are transmitted correctly and the
fifth bit is in error. This event can be denoted as {OOOOLEY, where O denotes an okay bit.
Because the trials are independent and the probability of a correct transmission is 0.9,

P(X = 5) = P(OOOOE) = 0.9°0.1 = 0.066

Note that there 1s some probability that X will equal any integer value. Also, if the first trial 1s
a success, X = 1. Therefore, the range of X'is {1, 2, 3. ... |, that is, all positive integers.



3-7 Geometric and Negative Binomial
Distributions

Definition

In a series of Bernoulli trials (independent trials with constant probabilitv p of a suc-
cess), let the random variable X denote the number of trials until the first success.

Then X is a geometric random variable with parameter 0 < p < [ and

fy=(1-pf" x=12.. (3-9)




3-7 Geometric and Negative Binomial
Distributions
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Figure 3-9. Geometric distributions for selected values
of the parameter p.



3-7 Geometric and Negative Binomial
Distributions

The probability that a wafer contains a large particle of contamination 1s 0.01. If it is assumed
that the wafers are independent. what is the probability that exactly 125 wafers need to be
analvzed before a large particle 1s detected?

Let X denote the number of samples analyzed until a large particle is detected. Then X'is
a geometric random variable with p = 0.01. The requested probability is

P(X = 125) = (0.99)*%0.01 = 0.0029



3-7 Geometric and Negative Binomial

Distributions

Definition

[f X'1s a geometric random variable with parameter p,

w=EX)=1/p and o =VX)=(1-p)/p

(3-10)




Practice: The probability of a successful
optical alignment In the assembly of an
optical data storage product is .8.
Assume the trials are independent.

(a) What 1s the probability that the first
successful alignment requires exactly
four trials? At most four trials? At least
four trials?

(b) What Is the mean number of trials to
get a successful alignment?



3-7 Geometric and Negative Binomial
Distributions

Lack of Memory Property

A geometric random variable has been defined as the number of trials until the first success.

However, because the trials are independent. the count of the number of trials until the next
success can be started at any trial without changing the probability distribution of the random
raariable. For example, in the transmission of bits, if 100 bits are transmitted, the probability
that the first error, after bit 100, occurs on bit 106 is the probability that the next six outcomes
are OOOOOE. This probability is (0.9)°(0.1) = 0.059, which is identical to the probability
that the initial error occurs on bit 6.

The implication of using a geometric model is that the system presumably will not wear
out. The probability of an error remains constant for all transmissions. In this sense, the geo-
metric distribution is said to lack any memory. The lack of memory property will be dis-
cussed again in the context of an exponential random variable in Chapter 4.



3-7 Geometric and Negative Binomial
Distributions

3-7.2 Negative Binomial Distribution

A generalization of a geometric distribution in which the random variable is the number of
Bernoulli trials required to obtain r successes results in the negative binomial distribution.

In a series of Bernoulli trials (independent trials with constant probability p of a suc-
cess), let the random variable X denote the number of trials until » successes occur.
Then X 1s a negative binomial random variable with parameters 0 < p < 1 and

r=1,2,3,...,and

r—1
ﬂ:x}=(r 1)[1 - x=rr+lLr+2,... (3-11)
ja_




3-7 Geometric and Negative Binomial

Distributions
Figure 3-10. o - gii

Negative binomial
distributions for
selected values of
the parameters r
and p.
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3-7 Geometric and Negative Binomial
Distributions
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Figure 3-11. Negative binomial random variable
represented as a sum of geometric random variables.



3-7 Geometric and Negative Binomial
Distributions

3-7.2 Negative Binomial Distribution

[f X 15 a negative binomial random variable with parameters p and r,

Ln=EX)=r/p and o =VX)=rl-p)p’ (3-12)




3-7 Geometric and Negative Binomial
Distributions

Example 3-25

A Web site contains three identical computer servers. Only one is used to operate the site. and
the other two are spares that can be activated in case the primary system fails. The probability
of a failure in the primary computer (or any activated spare system) from a request for service
is 0.0005. Assuming that each request represents an independent trial. what is the mean num-
ber of requests until failure of all three servers?

Let X denote the number of requests until all three servers fail, and let X, X5, and X,
denote the number of requests before a failure of the first. second. and third servers used,
respectively. Now, X' = X, + X, + Xj. Also. the requests are assumed to comprise independ-
ent trials with constant probability of failure p = 0.0005. Furthermore. a spare server is not
affected by the number of requests before it is activated. Therefore. X has a negative binomial
distribution with p = 0.0005 and » = 3. Consequently,

E(X) = 3/0.0005 = 6000 requests



3-7 Geometric and Negative Binomial
Distributions

Example 3-25

What is the probability that all three servers fail within five requests? The probability is
P(X = 5) and

PIX=5)=PX=3)+ PIX=4) + PIX =75)
| 3 | | 4 |
= (0.0005" + (_})U.U(}Uﬁ'"[U.‘J‘J*Jj] + (_})U.UUUS'"[U'.‘L'Wﬁ_]"

=125 x 107"+ 3.7 x 107" 4+ 7.49 x 107"
= 1.249 x 107"



3-8 Hypergeometric Distribution

Definition

A set of N objects contains
K objects classified as successes

N — K objects classified as failures

A sample of size n objects 1s selected randomly (without replacement) from the N
objects, where K = Nandn = N.

Let the random variable X denote the number of successes in the sample. Then
X i1s a hypergeometric random variable and

G
)

x = max{0,n + K — N} to min{K, n} (3-13)




3-8 Hypergeometric Distribution

Figure 3-12.
Hypergeometric
distributions for
selected values of
parameters N, K, and n.
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3-8 Hypergeometric Distribution

Example 3-27

A batch of parts contains 100 parts from a local supplier of tubing and 200 parts from a sup-
plier of tubing in the next state. If four parts are selected randomly and without replacement,
what is the probability they are all from the local supplier?

Let X equal the number of parts in the sample from the local supplier. Then, X has a
hypergeometric distribution and the requested probability is P(X = 4). Consequently,

( mu) (:ﬂ.uu)
4 0

P(X =4) = = 0.0119

(%)




3-8 Hypergeometric Distribution

Example 3-27

What is the probability that two or more parts in the sample are from the local supplier?

( mu) (EE}[}) ( 1{1{1) (2[}[}) ( 1{1{1) (2[}[})
2 2 3 | 4 0
PX = 2) = 2 +
(3{}{}) (3{}{})
4 4

(3{}{})
4
= 0.298 + 0.098 + 0.0119 = 0.408
What is the probability that at least one part in the sample i1s from the local supplier?
( | UU)(EUU)
() 8

PX=1)=1-PX=0)=1- = 0.804

(mu)
._1




3-8 Hypergeometric Distribution

Mean and Variance

It X is a hypergeometric random variable with parameters N, K, and »n, then

: N -
L=EX)=np and o =WX)=np(l _P}(W—Tj (3-14)

where p = K/N.

Here p 1s interpreted as the proportion of successes in the set of N objects.



3-8 Hypergeometric Distribution

Finite Population Correction Factor

The term in the variance of a hvpergeometric random variable

N—n
N—1

15 called the finite population correction factor.




3-8 Hypergeometric Distribution
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Hypergeometric probabi lity | ©.025 0.149 0.326 0.326 0.14% 0.025
Binomial probability 0.031 0.156 0.321 0.312 0.155 0.031

Figure 3-13. Comparison of hypergeometric and binomial

distributions.




Practice: 850 parts, 50 parts are defective, 800
parts are non-defective. Randomly select two
parts without replacement. Find probability
that

(1) both parts are defective

(2) one of the parts selected is defective

(3) one or more parts are defective

(4) at least one part in the sample Is non-
defective

Let X =# of defective parts

(5) Find E(X) and V(X)

(6) If sampling Is done with replacement,
what Is p( X=1)?




3-9 Poisson Distribution

Example 3-30

Consider the transmission of » bits over a digital communication channel. Let the random variable X
equal the number of bits in error. When the probability that a bit is in error is constant and the transmis-
sions are independent, X has a binomial distribution. Let p denote the probability that a bit is in error. Let
A = pn. Then, E(x}) = pn = A and

Q- ORI

Mow, suppose that the number of bits transmitted increases and the probability of an error decreases
exactly enough that ps remains equal to a constant. That 18, » increases and p decreases accordingly, such
that Ei.X'}) = A remains constant. Then, with some work, it can be shown that

OG- (=3 (-5) e

e _‘i.-l'l'l-

x!

s0 that

limg e X = x) =

=012, ..

Also, because the number of bits transmitted tends to infinity, the number of errors can equal any non-
negative integer. Therefore, the range of X 1s the integers from zero to infinity.



3-9 Poisson Distribution

Definition

Ciiven an interval of real numbers, assume events occur at random throughout the
interval. If the interval can be partitioned into subintervals of small enough length
such that

(1) the probability of more than one event in a subinterval is zero,

(2) the probability of one event in a subinterval 1s the same for all subintervals
and proportional to the length of the subinterval, and

(3) the event in each subinterval 1s independent of other subintervals, the ran-
dom experiment is called a Poisson process.

The random variable X that equals the number of events in the interval 1s a Poisson
random variable with parameter 0 << A, and the probability mass function of X is

Y
e ‘AT

x!

x=0,1,2,... (3-16)

flx) =




3-9 Poisson Distribution

Consistent Units

It 1s important to use consistent units in the calculation of probabilities, means. and vari-
ances involving Poisson random variables. The following example illustrates unit conversions.
For example. it the

average number of flaws per millimeter of wire is 3.4, then the

average number of flaws in 10 millimeters of wire is 34, and the

averace number of flaws in 100 millimeters of wire 1s 340,



3-9 Poisson Distribution

Example 3-33

Contamination is a problem in the manufacture of optical storage disks. The number of particles
of contamination that occur on an optical disk has a Poisson distribution, and the average number
of particles per centimeter squared of media surface is 0.1. The area of a disk under study is 100
squared centimeters. Find the probability that 12 particles occur in the area of a disk under study.

Let X denote the number of particles in the area of a disk under study. Because the mean
number of particles is 0.1 particles per cm-

E(X) = 100 cm~ X 0.1 particles/cm™ = 10 particles
Therefore.

=107 12
pv = 12) = <—10" = 095



3-9 Poisson Distribution

Example 3-33

The probability that zero particles occur in the area of the disk under study is
PX=0)=¢e " =454 x10

Determine the probability that 12 or fewer particles occur in the area of the disk under
study. The probability is
|2

= —]U IUI
P[*FEIE):PI[.Y:U)‘I-P[X: |)—|—---—|— 2



3-9 Poisson Distribution

Mean and Variance

If X 15 a Poisson random variable with parameter A, then

p=EX)=A and o*=VX)=2A (3-17)




Practice: The number of telephone calls that
arrive at a phone exchange is often modeled
as a poisson random variable. Assume that on
the average there are 10 calls per hour. Find
probability that

(a) exactly 5 calls within one hour

(b) no more than 3 calls within one hour

(c) exactly 15 calls within two hours

(d) 5 calls within 30 minutes



