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LEARNING OBJECTIVES

After careful stud',*crf this clmpter Yo should be able to do the fq:r"nwingt

1. Understand and describe sample spaces and events for random experiments with graphs, tables,
lists, or tree diagrams

2. Interpret probabilities and use probabilities of outcomes to calculate probabilities of events in
discrete sample spaces

3. Use permutation and combinations to count the number of outcomes in both an event and the
sample space.

4. Calculate the probabilities of joint events such as unions and intersections from the probabilities
of individual events

5. Interpret and calculate conditional probabilities of events
6. Determine the independence of events and use independence to calculate probabilities
7. Use Bayes’ theorem to calculate conditional probabilities

8. Understand random variables




2-1 Sample Spaces and Events

2-1.1 Random EXxperiments
Definition

An experiment that can result in different outcomes, even though it 1s repeated in the
same manner every time, 1s called a random experiment.




2-1 Sample Spaces and Events

2-1.1 Random EXxperiments
Example: Toss a coin.
Coin may land on heads (H) or tails (T).



2-1 Sample Spaces and Events

2-1.2 Sample Spaces
Definition

The set of all possible outcomes of a random experiment 1s called the sample space
of the experiment. The sample space 1s denoted as §.




2-1 Sample Spaces and Events

2-1.2 Sample Spaces
* Discrete S={1, 2, 3}
e Continuous
Example 2-1

Consider an experiment i which vou select a molded plastic part, such as a connector, and
meastre its thickness. The possible values for thickness depend on the resolution of the meas-
urmg nstrument, and they also depend on upper and lower bounds for thickness. However, 1t
might be convenient to defime the sample space as simply the positive real lime

S=R" = {r|x> 0}



2-1 Sample Spaces and Events

Example: Toss a coin continued.
In this example, the sample space i1s S={H, T}
Tree Diagrams

« Sample spaces can also be described graphically with
tree diagrames.

— When a sample space can be constructed in several steps or
stages, we can represent each of the n, ways of completing the
first step as a branch of a tree.

— Each of the ways of completing the second step can be
represented as n, branches starting from the ends of the original
branches, and so forth.



2-1 Sample Spaces and Events

Messaga 1

Mossage 2 —————————— e ——— - a

on time late

Message 3 —\ —(—— 86— ——— —(— — — 8- — &

an tmm/l::& -:Jntlme/\ n:-nhme/:& nnhrn/\

Figure 2-5 Tree diagram for three messages.



2-1 Sample Spaces and Events

Example 2-3, S={OT,OT,0T; OT, OT, L; OT,L,OT,;
OT,L,L; L,OT,OT,; L,OT,L; L,L,OT,; L,L,L}

Fach message m a digital communication svstem 15 classified as o whether 1f 15 recerved
within the time specihied by the system design. If three messages are classified, use a tree
diagram to represent the sample space of possible outcomes,

Fach message can enther be receved on time or late. The possible results for three mes-

sages can be displayed by erght branches i the tree diagram shown m Fig. 2-3



2-1 Sample Spaces and Events

2-1.3 Events
Definition

An event 15 a subset of the sample space of a random experiment.




2-1 Sample Spaces and Events

2-1.3 Events
Basic Set Operations

#  The union of two events 15 the event that consists of all cutcomes that are contained
i either of the two events. We denote the umion as £, U 5.

#  The intersection of two events 15 the event that consists of all outcomes that are
contained in both of the two events. We denote the ntersection as Ey (1 F;.

® The complement of an event in a sample space 15 the set of outcomes n the sample

space that are not in the event. We denote the component of the event £ as £,



2-1 Sample Spaces and Events

2-1.3 Events

Example: Toss a coin continued.
S={H,T}

El1={Head appears}={H}
E2={Tail appears}={T}

E1 and E2 are subsets of the sample space
S.



2-1 Sample Spaces and Events

Definition

Two events, denoted as £, and E,, such that
E\MNE =

are sald to be mutually exclusive,




2-1 Sample Spaces and Events

Venn Diagrams

.-.4. i .E

A B

fal (b

Sample spaca 5 with events 4 and B
(AVBIAC (A CF

Figure 2-8 Venn diagrams.



2-1 Sample Spaces and Events

2-1.4 Counting Techniques
Multiplication Rule

[f an operation can be described as a sequence of & steps, and

it the number of ways of completing step 1 1s ny, and

if the number of ways of completing step 2 1s n, for each way of completing
step 1, and

if the number of wavs of completing step 3 15 ny for each way of completing
step 2, and so forth,

the total number of wavs of completing the operation 1s

My A My A A Mg




2-1 Sample Spaces and Events

2-1.4 Counting Techniques
Permutations

The number of permutations of n different elements 1s n! where

nl=nXm—-1)Xn-2)X - xX2XI

(2-1)




2-1 Sample Spaces and Events

2-1.4 Counting Techniques
Permutations : Example 2-10

A printed circuit board has eight different locations in which a component can be placed. If four different
components are to be placed on the board, how many different designs are possible?

Each design consists of selecting a location from the eight locations for the first component, a lo-
cation from the remaining seven for the second component, a location from the remaining six for the
third component, and a location from the remaining five for the fourth component. Therefore,

1

Pl=8xTx6x5= 4_‘ = 1680 different designs are possible.



2-1 Sample Spaces and Events

2-1.4 Counting Techniques
Permutations of Subsets

The number of permutations of subsets of » elements selected from a set of »n differ-
ent elements 15

(n — r)!

Pl=nxXn—1}xn—-2)xxXnh—-—r+1)= (2-2)




2-1 Sample Spaces and Events

2-1.4 Counting Techniques
Permutations of Similar Objects

The number of permutations of n = ny + n; + -~ + n, objects of which n, are of
one type, n, are of a second type, ..., and n, are of an rth type is

n!

2-3
mlndm!..onl (£2)




2-1 Sample Spaces and Events

2-1.4 Counting Techniques
Permutations of Similar Objects: Example 2-12

A part 1= labeled by printing with four thick lines, three medium lines, and two thin lines. If each order-
ing of the nine lines represents a different label, how many different labels can be generated by using this
scheme?

From Equation 2-3, the number of possible part labels is




2-1 Sample Spaces and Events

2-1.4 Counting Techniques
Combinations

The number of combinations, subsets of size r that can be selected from a set of »
elements, 15 denoted as () or C and

n n! -
(r) - riin —r)! (2-4)




2-1 Sample Spaces and Events

2-1.4 Counting Techniques
Combinations: Example 2-13

A printed circuit board has eight different locations in which a component can be placed. If five identi-
cal components are to be placed on the board, how many different designs are possible?

Each design is a subset of the eight locations that are to contain the components. From Equation
2-4, the number of possible designs is



2-2 Interpretations of Probability

2-2.1 Introduction

 Used to quantify likelthood or chance

 Used to represent risk or uncertainty In
engineering applications

» Can be interpreted as our degree of belief or
relative frequency



2-2 Interpretations of Probability

Equally Likely Outcomes

Whenever a sample space consists of N possible outcomes that are equally likely, the
probability of each outcome 1s 1 /N.




2-2 Interpretations of Probability

Definition

For a discrete sample space, the probability of an event E,
denoted by P(E) = number of outcomes in E/ number of

possible outcomes in S



Example: Toss a coin continued
P(E1)=P(H) =%
P(E2)=P(T) =%



2-2 Interpretations of Probability

2-2.2 Axioms of Probability

Probability 15 a number that 1s assigned to each member of a collection of events
from a random experiment that satisfies the following properties:
[f § 15 the sample space and £ 1s any event in a random experiment,

(1 PS)y=1
(2) 0=PE)=1
(3} Fortwo events £, and E; with B, M E, = &

P(E, U Ey) = P(E)) + P(Ey)




Review

Random Experiment

l
Sample Space (5)

l
Events (E)

l
Probability



A random experiment can results in
one of the following outcomes {a, b, c, d}.
Let A={a,b}, B={b,c}, C={d},
P(A),P(B),P(C), P(ANB) and P(AUB)
S={a,b,c,d}
P(A)=2/4=1/2
P(B)=2/4=1/2
P(C)=1/4
ANB={b}, P(ANB)=1/4
AUB={a,b,c}, P(AUB) = %
P(AUB) = P(A)+P(B)-P(ANB)




2-3 Addition Rules

Probability of a Union

P(AUB)=P(4)+ F(B) - P(AN B) (2-5)




Mutually Exclusive Events

If 4 and B are mutually exclusive events,

P(4 U B) = P(4) + P(B) (2-6)




Example 2-16

A random experiment can result in one of the outcomes {a, b, ¢, d! with probabilities 0.1, 0.3,
(0.5, and 0.1, respectively. Let 4 denote the event |a. b{. B the event b, ¢, d}. and Cthe event
v} Then,

P4)=01+03=04

PB) =03+054+01=009

P(C) = 0.]
Also, P(A") =06, P(B") = 0.1, and P(C") = 0.9, Furthermore, because 4 M B = {h}.

PATEB) =03, Becawse AUB=Ja. b e dl PAUB) =01+03+054+01=1
Because A 11 C 15 the null set. P(4 M C) = 0.



Practice: The following table lists the history of 940
wafers In a semiconductor manufacturing process,
suppose one wafer is selected at random.

S e e
514 68 582

low
contamination

High 112 246 358
contamination

626 314 940

H = {wafer contains high levels of contamination}
C= {wafer Is from the center of the spattering tool}
What is the probability that a wafer is from the
center of the spattering tool or contains high levels
of contamination (or both)?



Three Events

P(4UBUC) = P(4) + P(B) + P(C) — P(AN B)
—~PANC)-PBNC)+PANBNC) (2-7)




Figure 2-12 Venn diagram of four mutually exclusive events



A collection of events, £y, E,, ..., £ 1s said to be mutually exclusive if for all pairs,
For a collection of mutually exclusive events,

P{El UEE U ... UE;_.] — P{El] + P{Eﬂ +P(Ej;] {E-E]




2-4 Conditional Probability

 To introduce conditional probability, consider an example
Involving manufactured parts.

» Let D denote the event that a part is defective and let F
denote the event that a part has a surface flaw.

» Then, we denote the probability of D given, or assuming,
that a part has a surface flaw as P(D|F). This notation is
read as the conditional probability of D given F, and it is
Interpreted as the probability that a part is defective, given
that the part has a surface flaw.



PID|F)=0.25
25% = 5% defective
defactive { P(D|F') = 0.05

LS s .
L

F = parts with F' = parts without
arface flaws surfacs flaws

Figure 2-13 Conditional probabilities for parts with
surface flaws



Definition

The conditional probability of an event B given an event 4, denoted as P(B|A4), is

P(B|4) = P(4 N B)/P(4) (2-9)

for P(4) = 0.




. 400 parts are classified by surface

flaws and defective.

Find the probability that the part is defective
given it has surface flaws.

And the probability that the part Is defective
given 1t doesn’t have surface flaws.



- Surface flaws (F) | No surface Flaws -
(F')

Defective (D)

Not defective 30 342 372
(D)

40 360 400(Total)
Want to find P(D|F) and P(D|F")
P(DNF) =10/400, P(F) =40/400
P(D|F)=P(DNF)/P(F) =
(10/400)/(40/400)=1/4=.25

P(DNF’) = 18/400, P(F") = 360/400
P(D|F") = P(DNF')/P(F') =
(18/400)/(360/400)=.05



. A batch contain 10 parts
from tool one and 40 parts from tool
two. If two parts are selected
randomly without replacement.
Given that the 1% selected Is from
tool one, what is the probability that
the second part selected Is from tool
two?



P(AUB)=P(A)+P(B)-P(ANB)
P(A|B) = P(ANB)/P(B)

Can derive

P(AB)+P(A'[B) =1

Proof: P(A|B)+ P(A’|B)

= P(ANB)/P(B) + P(A'NB)/P(B)
=P(B)/P(B)=1



2-5 Multiplication and Total
Probability Rules

2-5.1 Multiplication Rule

P(4 N B) = P(B|4)P(4) = P(4|B)P(B) (2-10)




P(A|B) =.3and P(B) = .6, want to
know what is P(ANB) and P(A'(NB)?
Solution:

P(ANB) = P(A|B)P(B)=.3%.6=.18
P(A'NB)=P(A'|B)P(B)=(1-P(A|B))P(B)=(1-
3)%.6=.42

Or P(A'NB) = P(B) - P(ANB) =.6-.18 =.42



2-5.2 Total Probability Rule

E I: Eq ' ,-'r(r
I E3 /
.El‘_‘lE]_ I.' E-’i
L= .EIFTEE B |
B E_3
e
..____-_—— - T BﬂEd

i TS B=(BrE) w(BrEy) (B rEg)wiBrEy)
Figure 2-15 Partitioning

an event into two mutually Figure 2-16 Partitioning an
exclusive subsets. event into several mutually
exclusive subsets.



For any events 4 and B,

P(B) = P(BN A) + P(BN 4') = P(B|4)P(4) + P(B|A")P(4") (2-11)




Example 2-27

Consider the contamination discussion at the start of this section. The information is summarized here

Probability of Failure Level of Contamination Probability of Level
0.1 High 0.2
0.005 Mot High 0.8

Let F denote the event that the product fails, and let & denote the event that the chip is exposed to
high levels of contamination. The requested probability is P(F). and the information provided can be
represented as

P(F|HY=0.10 and  P(F|H') = 0.005
P(H) =020  and P(H') = 0.80

From Equation 2-11,
P(F}) = 0.10{0.20} + 0.005{0.80) = 0.024

which can be interpreted as just the weighted average of the two probabilities of failure.



Practice: In the 2004 presidential
election, exit polls from the critical state
of ohio provided the following results,

what Is the probability a randomly
selected respondent voted for Bush?

I N

No college degree 50% 50%
(62%)

College degree 53% 46%
(38%)



Total Probability Rule (multiple events)

Assume E|, E,, ..., Epare k mutually exclusive and exhaustive sets. Then

P(B)=P(BNE)) + PBNEy) + - + P(BNEy)
= P(B|[E))P(E)) + P(B|Ey)P(Ey) + -+ + P(BIE)P(Ey)  (2-12)




Assume the following probabilities for
product failure subject to levels of contamination in
semiconductor manufacturing in a particular
production run. 20% of them are with high level
contamination, within them, 10% are classified as
product failure; 30% of them are with medium level
contamination, within them, 1% are classified as
product failure; and 50% of them are with low level
contamination, within them, .1% of them are
classified as product failure. A product is randomly
selected, what is the probability that the selected
product is classified as product failure?



2-6 Independence

Definition (two events)

Two events are independent if any one of the following equivalent statements 1s true:
(1) P{A|B) = P(4)
(2) P(B|4) = P(B)
(3) P(ANB)= PA)P(B) (2-13)




Example 2-34

The following circuit operates only if there 1s a path of functional devices from left to right. The proba-
bility that each device functions 15 shown on the graph. Assume that devices fail independently. What is
the probability that the circuit operates?

0.95

0.95

Let Tand B denote the events that the top and bottom devices operate, respectively. There is a path
if at least one device operates. The probability that the circuit operates 1s

P(TorB)=1—P[(TerB)] =1 —P(T" and B')

a simple formula for the solution can be derived from the complements 77 and £'. From the independ-
ence assumption,

P(T" and B') = P(T')P(B'} = (1 — 0.95% = 0.05°
S0

P(TorB) = 1 — 0.05% = 0.9975



850 parts, 50 defective, two
parts are selected without replacement. If
the first part selected is defective, what Is
the probability that the second part
selected Is also defective? What is the
probability that the second part selected
IS defective? Is the event first part
selected is defective independent with
the event that the second part selected Is
defective? Under what situation that
these two events are independent?




Total probability rule
P(B) = P(B|A)P(A)+P(B|A")P(A")



2-7 Bayes’ Theorem

Definition




Bayes’ Theorem

If £\, Ea, ..., Epare k mutually exclusive and exhaustive events and B 1s any

gvent,

P(B|EY)P(E))

PENB) = PGIE)PE,) + PBIEJPE) + — + PBIEYP(E

for P(B) = 0

(2-16)




Example 2-37

Because a new medical procedure has been shown to be effective in the early detection of an illness, a
medical screening of the population is proposed. The probability that the test correctly identifies some-
one with the illness as positive is (.99, and the probability that the test correctly identifies someone with-
out the illness as negative is 0.95. The incidence of the illness in the general population is (L0001, You
take the test, and the result is positive. What is the probability that you have the illness?

Let [} denote the event that you have the illness, and let 5 denote the event that the test signals positive.
The probability requested can be denoted as P(2|.S). The probability that the test correctly signals someone
without the illness as negative 1s 0.95. Consequently, the probability of a positive test without the illness 1s

P(S| D"y = 0.05
From Bayes’ Theorem.,

P(D|S) = P{S|D)P(D)/[P(S|D)P(D) + P(S|D")P(D')]
= 0.99(0.0001)/[0.99(0.0001) + 0.05(1 — 0.0001)]
— 1/506 = 0.002

That is, the probability of now having the illness given a positive result from the test 15 only 0,002,
Surprisingly, even though the test is effective, in the sense that P(S|D) is high and P(5| D) is low, be-
cause the incidence of the illness in the general population is low, the chances are quite small that you
actually have the disease even if the test is positive.



A printer failure are associated
with three types of problems, hardware
problem with probability .1, software
problem with probability .6 and other
problems with probability .3. The
probability of a printer failure given a
hardware problem is .9; given a software
problem is .2 and given any other type of
problem iIs .5. What Is the most likely
cause of the problem?




2-8 Random Variables

Definition

A random variable is a function that assigns a real number to each outcome in the
sample space of a random experiment.

A random variable 1s denoted by an uppercase letter such as X. After an experiment
15 conducted, the measured value of the random vanable 1s denoted by a lowercase
letter such as x = 70 milliamperes.




Example: Toss a coin two times. Let
X={number of heads appear in each
outcome}. X={0,1,2}. Possible values of
r.v X Is x=0, x=1 or x=2. P(X=0)=1/4,
P(X=2)=1/4, P(X=1)=1/4+1/4=1/2

H H 2 1/4

H T 1 1/4

T H 1 1/4

T T 0 1/4



In a semiconductor
manufacturing process. Two wafers from
a lot are tested. Each wafer Is classified
as pass or fail. Assume that the
probability that a wafer passes the test is
.8 and wafers are independent. Let
X={number of wafers that pass}, what
are the possible values of X? What are
the probability of each x?




Definition

A discrete random variable 1s a random variable with a finite (or countably infinite)
range.

A continuous random variable 15 a random variable with an terval (either finite or
infinite) of real numbers for its range.




Examples of Random Variables

Examples of continuous random variables:
electrical current, length, pressure, temperature, time, voltage, weight

Examples of discrete random variables:

number of scratches on a surface, proportion of defective parts among 1000
tested, number of transmitted bits received in error




