The field of statistics deals with the collection, presentation, analysis, and use of the sampled data to make inferences of the population to

- Make decisions
- Solve problems
- Design products and processes

• **Probability models** make conclusions about a sample based on knowledge of the population, help quantify the risks involved in statistical inference, that is, risks involved in decisions made every day.

• Probability provides the **framework** for the study and application of statistics.

Overview

- Identify a population of interest

 for example, UNM freshmen female students' weight, height or entrance GPA.
- Population parameters

—-unknown quantities of the population that are of interest, say, population mean μ and population variance σ^2 etc.

Random sample

----Select a random or representative sample from the population.

—-A sample consists random variables Y_1, \dots, Y_n , that follows a specified distribution, say $N(\mu, \sigma^2)$

- ► Statistic: a function of radom variables Y₁,..., Y_n, which does not depend on any unknown parameters
- ► Observed sample: *y*₁, *y*₂, · · · , *y_n* are observed sample values after data collection

We cannot see much of the population

- ---but would like to know what is typical in the population
- The only information we have is that in the sample.

Goal: want to use the sample information to make inferences about the population and its parameters.

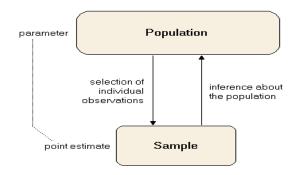


Figure 1 : Population, sample and statistical inference