Random Sampling and data description

- **Recall**: we are looking at ways to summarize data
 - Numerical summaries:

measures of center (mean, median, mode) measures of spread (sample variance, range, IQR)

Graphical summaries:

Stem and leaf plots Histograms Box Plots

6-1 Numerical Summaries

Definition: Sample Mean

If the *n* observations in a sample are denoted by x_1, x_2, \ldots, x_n , the sample mean is

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$$
(6-1)

EX: # earthquakes of magnitude 7 or greater for years 1980-1990:

18, 14, 10, 15, 8, 15, 6, 11, 8, 7, 12, 11, 23, 16, 15, 25, 22, 20, 16, 23

$$\frac{-}{x} = \frac{\sum_{i=1}^{20} x_i}{20} = \frac{18 + 14 + \dots 23}{20} = 14.75$$

Definition: Median

First we need to order the data

6,7,8,8,10,11,11,12,14,15,15,15,16,16,18,20,22,23,23,25

and then choose that valued that divides the data in 2 halves.

If *n* is even, then Median =
$$\frac{X_{\frac{n}{2}} + X_{\frac{n+1}{2}}}{2}$$

If *n* is odd, then Median = $X_{\frac{n}{2}}$

Ex: n=20 is even, so Median is (15+15)/2=15

Definition: Mode

The mode is is the value that occurs the most frequently in a data set or a probability distribution

In our example, hence the mode is 15.

Remark:

The sample mean is affected by large values in the observations. Hence, if the data are highly skewed, it might not be the best measure to use. Instead, the median is a more robust measure, because it is always half way the data, no matter the value assumed by our observations.

Measures of spread or variability

Definition: Sample Variance

If x_1, x_2, \ldots, x_n is a sample of *n* observations, the sample variance is

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n - 1}$$
(6-3)

The sample standard deviation, s, is the positive square root of the sample variance.

Definition: Sample Variance

If x_1, x_2, \ldots, x_n is a sample of *n* observations, the sample variance is

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$
(6-3)

The sample standard deviation, s, is the positive square root of the sample variance.

n-1 are the degrees of freedom. We loose one degree of freedom for using the sample mean instead of the true mean

Definition: Sample Variance

If x_1, x_2, \ldots, x_n is a sample of *n* observations, the sample variance is

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n - 1}$$
(6-3)

The sample standard deviation, s, is the positive square root of the sample variance.

In our example, we obtain

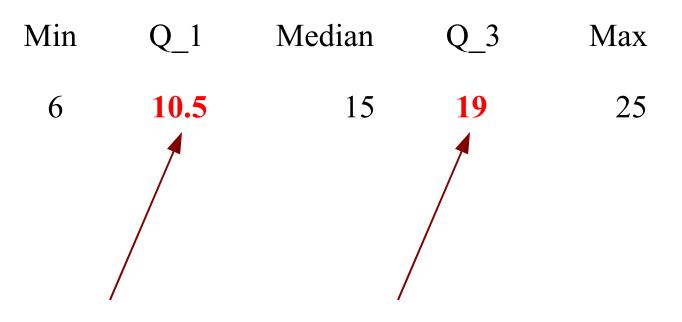
$$s^2 = 32.72 \ s = \sqrt{32.72} = 5.72$$

Definition: Five Number Summary

 Min
 Q_1
 Median
 Q_3
 Max

 6
 15
 25

Definition: Five Number Summary



Q_1: First Quartile

is the median of the first $\frac{1}{2}$ of the data

Q_2: Second Quartile

is the median of the $2^{nd} \frac{1}{2}$ of the data

Range: R=max-min= 25 - 6 = 19 Interquartile Range: IQR=Q_3-Q_1=19-10.5=9.5

The interquartile range is less sensitive to the extreme values in the sample than is the ordinary sample range

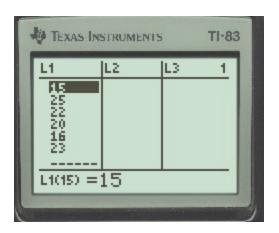
We enter the data using the STAT menu

and then we press 1: Edit

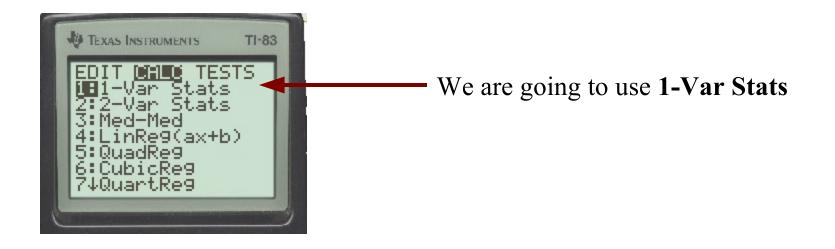
We enter the data using the STAT menu

and then we press 1: Edit

At the end we have the data all in one column



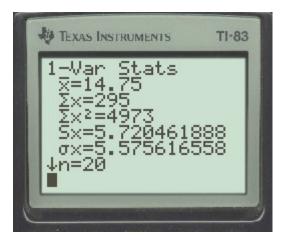
Press STAT and > to display the choices for the STAT CALC menu



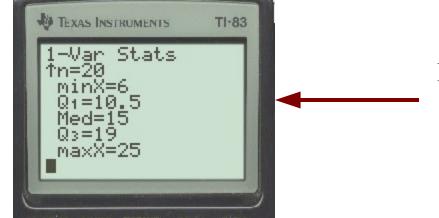
We are going to use 1-Var Stats

Mean, sum, sum of squares, sample standard deviation [/sqrt(n-1)], population standard deviation [/sqrt(n)]

Mean, sum, sum of squares, sample standard deviation [/sqrt(n-1)], population standard deviation [/sqrt(n)]



We are going to use 1-Var Stats



Min, Q_1, Med, Q_3, max

Graphical summaries

6-2. Stem-and-Leaf Diagrams

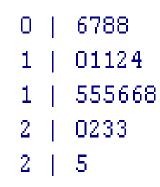
A stem-and-leaf diagram is a good way to obtain an informative visual display of a data set x_1, x_2, \ldots, x_n , where each number x_i consists of at least two digits. To construct a stem-and-leaf diagram, use the following steps.

Steps for Constructing a Stem-and-Leaf Diagram

- Divide each number x_l into two parts: a stem, consisting of one or more of the leading digits and a leaf, consisting of the remaining digit.
- (2) List the stem values in a vertical column.
- (3) Record the leaf for each observation beside its stem.
- (4) Write the units for stems and leaves on the display.

Ex: earthquakes in 1980-1999

Ex: earthquakes in 1980-1999



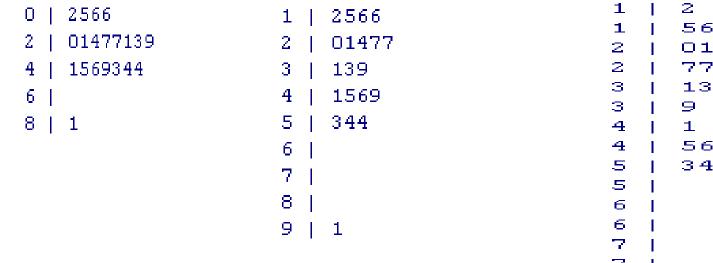
Ex: waiting time in minutes for 20 patients at a public health clinic.

16	45	16	54	15	49	12	54	91	21	33	20

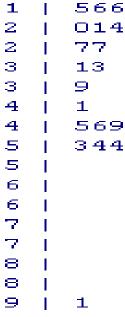
27 53 24 46 39 31 41 27

1	2566
2	01477
3	139
4	1569
5	344
6	
7	
8	
9	1

N.B. It's easy to produce stems of different length by rearranging the leaves around the stems....

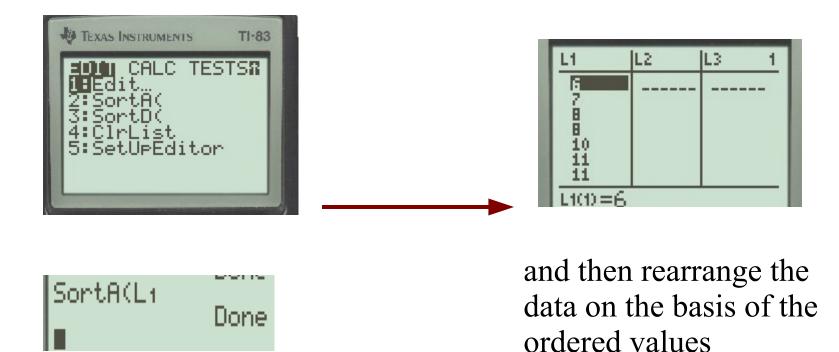


But the overall impression about the distribution might change with it (so, be careful in interpreting these plots)



TI 83/84 – how to create stem and leaf plots

We order the data with sortA (sort ascending)



Some links:

http://www.andrews.edu/~calkins/math/webtexts/stat08.htm http://wind.cc.whecn.edu/~pwildman/statnew/new_page_13.htm **6-3 Frequency Distributions and Histograms**

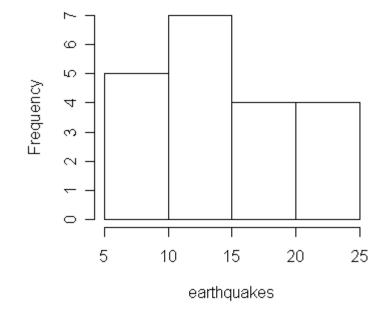
• A **frequency distribution** is a more compact summary of data than a stem-and-leaf diagram.

• To construct a frequency distribution, we must divide the range of the data into intervals, which are usually called **class intervals**, cells, or bins.

Constructing a Histogram (Equal Bin Widths):

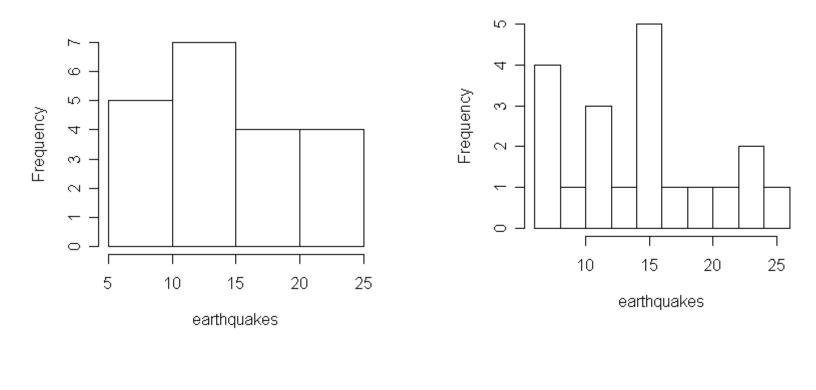
- (1) Label the bin (class interval) boundaries on a horizontal scale.
- (2) Mark and label the vertical scale with the frequencies or the relative frequencies.
- (3) Above each bin, draw a rectangle where height is equal to the frequency (or relative frequency) corresponding to that bin.

Ex: earthquakes in 1980-1999



with 5 classes

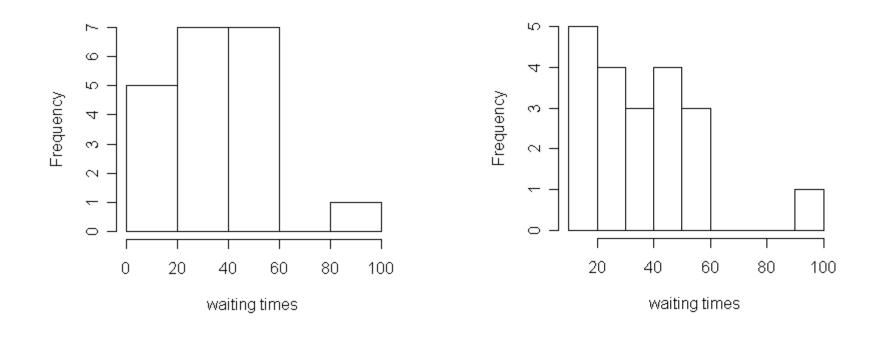
Ex: earthquakes in 1980-1999



with 5 classes

with 10 classes

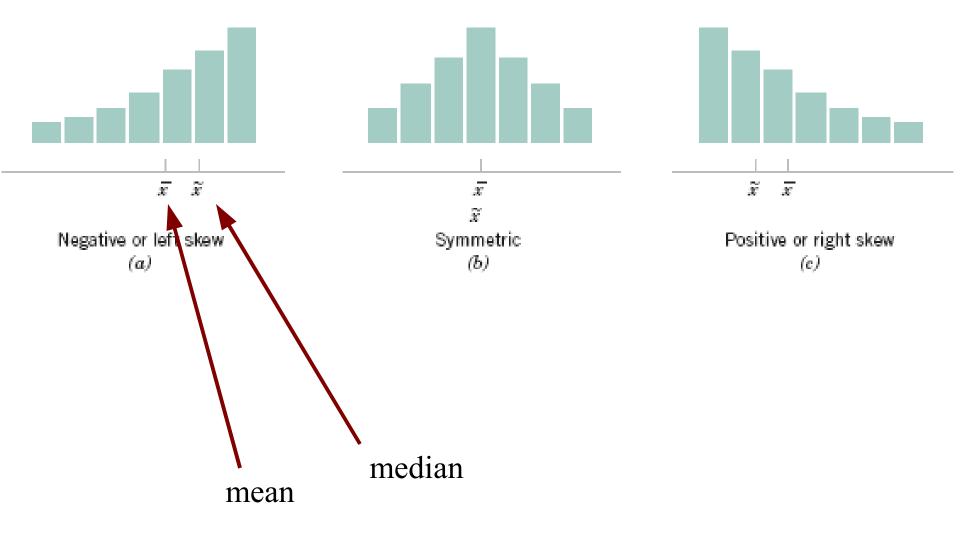
Ex: waiting time in minutes for 20 patients at a public health clinic.



with 5 classes

with 10 classes

Figure 6-11 Histograms for symmetric and skewed distributions.

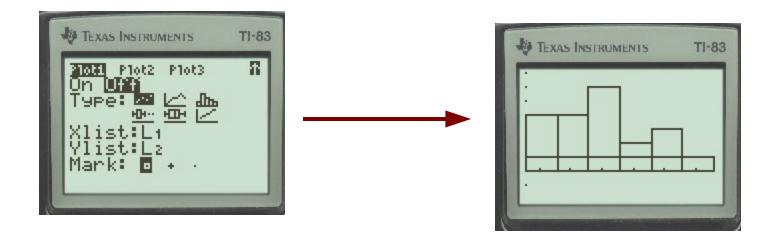


6-4 Box Plots

- The **box plot** is a graphical display that **simultaneously** describes several important features of a data set, such as center, spread, departure from symmetry, and identification of observations that lie unusually far from the bulk of the data.
- Whisker
- Outlier
- Extreme outlier

TI 83/84 – how to create histograms

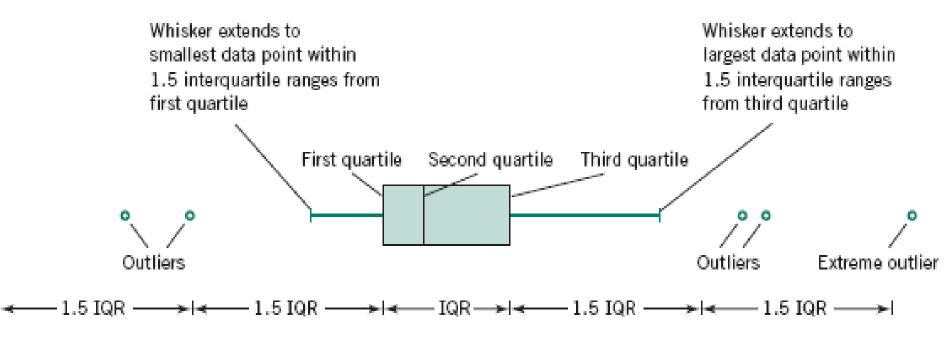
There is the possibility to create histograms in the Stat plot screen: to access the screen hit 2^{nd} function Y (stat plot), then hit 1 for Plot 1



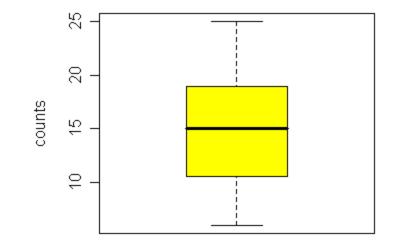
See complete description, for example, at

http://wind.cc.whecn.edu/~pwildman/stat/ti83/tihistogram/TIHistograms.html

Box Plots



Ex: earthquakes in 1980-1999



earthquakes

Ex: waiting time in minutes for 20 patients at a public health clinic.

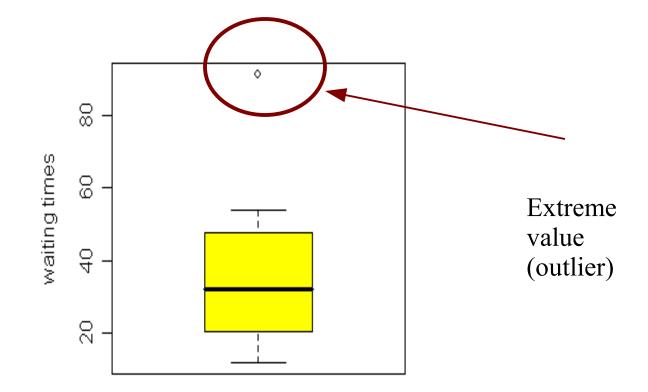


Figure 6-15

Comparative box plots of a quality index at three plants.



TI 83/84 – how to create box plots

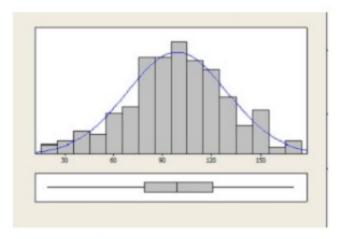
We use again the STAT PLOTS menu.



For more details, see for example:

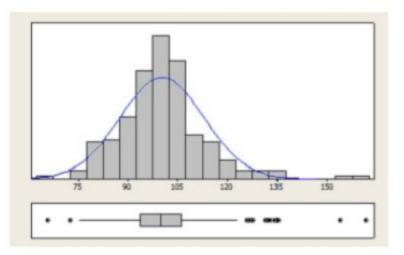
http://faculty.kutztown.edu/schaeffe/Tutorials/Statistics/Box_Plot/Box-Plot.html

Distributional shapes

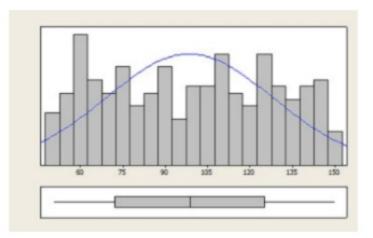


The distribution is unimodal, symmetric and bell-shaped ("normal").

The distribution is unimodal, symmetric and heavy-tailed



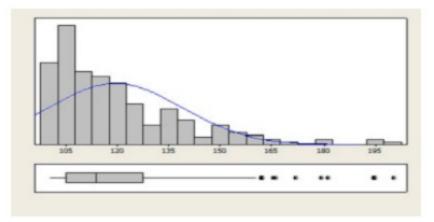
Distributional shapes



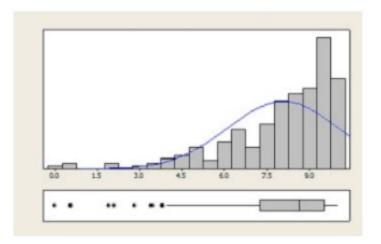
The distribution is symmetric, but not bell-shaped.

The boxplot shows symmetry, but the tails of the distribution are shorter(lighter) than in the normal distribution.

The distribution is skewed to the right, because the right tail is much longer than the left tail.



Distributional shapes



The distribution is skewed to the left, because the left tail is much longer than the right tail.

The distribution is bimodal.

