- Find permutation, combination, factorials.
(1) Calculate 12!
type 12 (in the run screen) -MATH—PRB-CHOOSE No. 4 !--ENTER(brings you back to the run screen) --ENTER - 479001600
(2) Calculate P_{5}^{12}
type 12-MATH-PRB-choose No. 2: nPr-ENTER(go back to the run screen)type 5-ENTER-95040
(3) Calculate

$$
\binom{12}{5}=\frac{12!}{5!(12-5)!}
$$

type 12-MATH-PRB-choose No. 3: nCr-ENTER(go back to the run screen)type 5-ENTER - 792

- Probability Distributions
(1) Binomial pmf
$X \sim \operatorname{Bin}(n, p)$
binompdf $(n, p, x)=\binom{n}{x} p^{x}(1-p)^{n-x}$.
Example: $X \sim \operatorname{Bin}(10, .1)$, want to find $\quad P(x=2)=\binom{10}{2} \cdot 1^{2} \cdot 9^{8}$.
2nd+distr-A:binompdf-ENTER-binompdf(10,.1,2)-. 1937
(2) Binomial cdf
binomcdf $(n, p, x)=P(X \leq x)$
Example: $X \sim \operatorname{Bin}(10, .1)$, want to find $\quad P(X \leq 3)=\sum_{x=0}^{x=3}\binom{10}{x} \cdot 1^{x} \cdot 9^{10-x}$.
2nd+distr-A:binomcdf-ENTER-binompdf(10,.1,3)—. 9872
(3) Similarly, you can calculate pmf and cdf for geometric, poisson distributions.
geometpdf(p, x)
geometcdf(p, x)
poissonpdf (λ, x)
$\operatorname{poissoncdf}(\lambda, \mathrm{x})$
- Standard Normal Distribution $N(0,1)$
(1) Find probability $P(Z \leq x)$

Example: $P(Z \leq 1.96)=.975$.
2nd+distr-2:normalcdf(-1E99,1.96) (Note, to enter -1E -1 2nd, 99)
Example: $P(-1.96 \leq Z \leq 1.96)=.95$
2 nd + distr $-2:$ normalcdf(-1.96,1.96)
(2) Find Z value

Example: want to find Z such that $P(Z \leq z)=.975$
2 nd+distr- 3 : invNorm (.975) $=1.96$

- Draw Histogram

Click stat-edit-enter test 2 score under L1, enter 1's under L2. Go back to the screen, click 2nd stat plot - enter - choose type as histrogram, should be the third one -click graph (note, if it doesn't work, you may need to check your window's setting, for our problem, you can set x from 30 to 100 , y from 0 to 10)

- t distribution
(1) Find Critical Value

Example: $t_{(\alpha / 2, d f=n-1)}=t_{(.05 / 2,47-1)}=2.01$
MATH— $0:$ solver-eqn: $0=.025-2 \mathrm{nd}+$ distr - $6: \operatorname{tcdf}(\mathrm{x}, 1 \mathrm{E} 99,46)$-enter—ALPHA+SOLVE
(2) Find P-value

Example: two sided test with degrees of freedom 46, $t_{0}=2.01, \mathrm{P}$-value $=2 P(t>$ $2.01)=2(1-P(t \leq 2.01))$. As we can see from previous example, the P -value should be equal to .05 .
$2(2 \mathrm{nd}+\operatorname{distr}-6: \operatorname{tcdf}(2.01,1 \mathrm{E} 99,46))$

