
Chapter 7: Categorical data

Previously we looked at comparing means and medians for quantitative
variables from one or more groups.

We can think of these problems has having a quantitative response
variable with a categorical predictor variable, which is the group or
treatment variable (such as placebo vs. treatment A vs treatment B).

In this section, we consider when all variables are categorical.

I An example might be college major vs political affiliation.

I A typical null hypothesis for this type of data is that there is no
association between the two variables.
—–For this example, the null hypothesis might be that the
proportions of students supporting the Democrat, Republican,
Libertarian, and Green parties are the same for different majors:
psychology, biology, statistics, history, etc.
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Categorical data: a motivating example

An interesting historical example are the data of survivors from the Titanic
shipwreck of 1912. Passengers from the event are classified as

I male or female, (sex)

I child or adult, (age)

I and 1st, 2nd, 3rd class, and crew members (class)

I survival (yes or no)

library(datasets)

data(Titanic)

Titanic
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Categorical data

, , Age = Child, Survived = No

Sex

Class Male Female

1st 0 0

2nd 0 0

3rd 35 17

Crew 0 0

, , Age = Adult, Survived = No

Sex

Class Male Female

1st 118 4

2nd 154 13

3rd 387 89

Crew 670 3
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Categorical data

, , Age = Child, Survived = Yes

Sex

Class Male Female

1st 5 1

2nd 11 13

3rd 13 14

Crew 0 0

, , Age = Adult, Survived = Yes

Sex

Class Male Female

1st 57 140

2nd 14 80

3rd 75 76

Crew 192 20
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Categorical data

The data can be reshaped into a single narrow format for the three
variables, plus a frequency for the number of times each combination
occurs.

library(reshape2)

df.titanic <- melt(Titanic, value.name = "Freq")

df.titanic

## Class Sex Age Survived Freq

## 1 1st Male Child No 0

## 2 2nd Male Child No 0

## 3 3rd Male Child No 35

## 4 Crew Male Child No 0

## 5 1st Female Child No 0

## 6 2nd Female Child No 0

## 7 3rd Female Child No 17

## 8 Crew Female Child No 0

## 9 1st Male Adult No 118

## 10 2nd Male Adult No 154

## 11 3rd Male Adult No 387

## 12 Crew Male Adult No 670

## etc.
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Categorical data

We usually like to think of statistical inferences as being based on
collecting data in order to test a certain scientific hypothesis. In this case,
we have the data first. What kinds of questions can be asked about this
data?

One question is whether survival probability depended on age (child or
non-child), passenger status and/or class (crew member vs passenger, 1st
class vs 3rd class, etc.) or on sex.

ADA1 November 12, 2018 6 / 108



Categorical data: inference for a proportion

We’ll return to the Titanic example later. We’ll start with making
inferences for a single proportion. That is, we have a single yes/no or 0-1
variable, and we wish to know what proportion of the population is a yes.
Examples include

I survival for patients receiving a certain treatment, such as a transplant

I proportion of college students graduating within five years

I proportion of high school students going to college

I proportion of likely voters plannng to vote for candidate X

I proportion of registered voters who will actually vote

I proportion of products made a factory that are defective (or will be
returned)

I proportion of free throws made successfully by a basketball player
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Categorical data: inference for a proportion

For a sample with n items, the best guess for the population proportion is:

p̂ =
# yes

n

This is particularly convenient if you record “yes” as 1 and “no” as 0.
Then the sample mean is also the sample proportion.
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Categorical data: inference for a proportion

Note that the CI follows the usual approach:

best guess ± critical value ×SE

where here

SE =

√
p̂(1− p̂)

n
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Categorical data: inference for a proportion

Often for proportions, we want a confidence interval (CI) for the
proportion. The theory is based on the binomial distribution and the
assumption that for large enough samples, the proportion is roughly
normally distributed. Letting p̂ be the sample proportion and zcrit be the
critical value for the standard normal distribution, the normal
approximation CI is

p̂ ± zcrit

√
p̂(1− p̂)

n
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Categorical data: inference for a proportion

For a 95% interval, zcrit is chosen so that the area in the middle of the
standard normal distribution is 95% of the entire distribution. This means
we use the value corresponding to the 97.5% quantile. This can be
obtained in R as

qnorm(.975)

#[1] 1.959964

which is often rounded to 1.96. Thus the 95% interval is usually computed
as

p̂ ± 1.96

√
p̂(1− p̂)

n
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Categorical data: inference for a proportion

A rule of thumb is the margin of error is close to 1/
√
n when p ≈ 0.5. Why is

this?

The function f (p) = p(1− p) is an upside-down parabola (like a frowny face)
which has a maximum at p = 0.5. When p = .5, and using zcrit ≈ 2, and p̂ ≈ p,
we have

zcrit

√
p̂(1− p̂)

n
≈ 2
√

(1/2)(1/2)/n = 2(1/2)
√

1/n =
√

1/n

Some useful values of n to keep in mind are say, n = 100, 400, 900. Then the
margin of error is about 10%, 5% and 3.3%, respectively.

Political opinion polls, or polls for election candidates often use sample sizes of

around 900 to 1200 respondents. The margin of error (i.e., zcritSE ) of 3.5% or so

is often reported for these polls, which corresponds to a bit more than 900

respondents. Margins of error can be a bit more complicated for more complex

kinds of polling such as stratified polling, cluster samplng etc. See STAT572 for

more on this topic...
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Categorical data: inference for a proportion

The 1983 Tylenol poisoning episode highlighted the desirability of using
tamper-resistant packaging. The article “Tamper Resistant Packaging: Is it
Really?” (Packaging Engineering, June 1983) reported the results of a survey on
consumer attitudes towards tamper-resistant packaging.

I A sample of 270 consumers was asked the question: “Would you be willing
to pay extra for tamper resistant packaging?”

I The number of yes respondents was 189.

Construct a 95% CI for the proportion p of all consumers who were willing in
1983 to pay extra for such packaging.

I Here n = 270 and p̂ = 189/270 = 0.700.

I The 95% CI is

0.7± 1.96
√

(0.7)(0.3)/270 = 0.7± 0.055 = (0.645, 0.755)

I This means that you are 95% confident that between 64.5% and 75.5% of
consumers would be willing to pay extra for the packaging. The population
here is consumers in 1983, so this proportion might have changed over time.
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Categorical data: inference for a proportion

Function prop.test().
I The syntax is prop.test(x,n,p). Here x is the number of

“successes”, n is the number of trials, and p is the probability of
success under the null hypothesis.

I The default null hypothesis is H0 : p = 0.5, you can change it.
I We are more interested in the confidence interval.

prop.test(189,270,correct=F)

# 1-sample proportions test without continuity correction

#data: 189 out of 270, null probability 0.5

#X-squared = 43.2, df = 1, p-value = 4.942e-11

#alternative hypothesis: true p is not equal to 0.5

#95 percent confidence interval:

# 0.6428459 0.7515429

#sample estimates:

# p

#0.7
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Categorical data: inference for a proportion

The function prop.test() actually uses a somewhat different formula
than the usual one we presented, and it is supposed to have slightly better
performance.

I The formula (without continuity correction) is method 3 from the
Newcombe reference, also called the Wilson score interval:

CI =
2np̂ + z2

2(n + z2)
±

z
√
z2 + 4np̂(1− p̂)

2(n + z2)

where z is the critical value, or 1.96 for a 95% interval. The interval
is centered at 0.5 for p̂ = 0.5 and otherwise is centered at a value in
between 0.5 and p̂, and closer to p̂ for larger n.

I There are quite a few variations on formulas for confidence intervals
for proportions, as referenced in
Newcombe R.G. (1998) Two-Sided Confidence Intervals for the Single
Proportion: Comparison of Seven Methods. Statistics in Medicine 17,
857–872.
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Package{Hmisc}

library{Hmisc}

binconf(x, n, alpha=0.05,

method=c("wilson","exact","asymptotic","all"),

include.x=FALSE, include.n=FALSE, return.df=FALSE)

#method=‘‘exact’’ gives the usual confidence interval

> binconf(189, 270, alpha=0.05,

+ method="exact")

PointEst Lower Upper

0.7 0.6415003 0.754047

#method=‘‘wilson’’ gives the wilson score interval ,

same as the one given by prop.test

> binconf(189, 270, alpha=0.05,

+ method="wilson")

PointEst Lower Upper

0.7 0.6428459 0.7515429
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Appropriateness of the CI

The standard CI is based on a large-sample standard normal
approximation to

z =
p̂ − p

SE
.

I A simple rule of thumb requires np̂ ≥ 5 and n(1− p̂) ≥ 5 for the
method to be suitable.

I Given that np̂ and n(1− p̂) are the observed numbers of successes
and failures, you should have at least 5 of each to apply the
large-sample CI.

I In the packaging example, np̂ = 270× (0.700) = 189 (the number
who support the new packaging) and n(1− p̂) = 270× (0.300) = 81
(the number who oppose) both exceed 5. The normal approximation
is appropriate here.
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Hypothesis testing for a proportion

To do hypothesis testing for a proportion, we can test

H0 : p = p0

against alternatives such as

HA : p < p0, HA : p 6= p0, or HA : p > p0

The test statistic in this case is a z-score

zobs =
p̂ − p0
SE

with SE =

√
p0(1− p0)

n

——-Note that SE here is different from the standard (Wald) CI because we use
p0 from the null hypothesis instead of using p̂.

Reject H0 if |zobs | is greater than a critical value (two sided test)
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Hypothesis testing for a proportion

Hypothesis testing is then just based on comparing zobs to a critical value,
or comparing the p-value to α, as usual. As usual, you can just an R
function such as prop.test() to do the hypothesis test.

For small sample sizes, you might also consider using an exact binomial
test, which uses probabilities from a binomial probability distribution
instead of using a normal approximation. This is done using
binom.test() in R, but works very similarly.
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Hypothesis testing for a proportion
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Hypothesis testing for a proportion

Example: (brain hemispheres) An article in the April 6, 1983 edition of
The Los Angeles Times reported on a study of 53 learning-impaired
youngsters at the Massachusetts General Hospital. The right side of the
brain was found to be larger than the left side in 22 of the children.

The proportion of the general population with brains having larger right
sides is known to be 0.25. Does the data provide strong evidence for
concluding, as the article claims, that the proportion of learning impaired
youngsters with brains having larger right sides exceeds the proportion in
the general population? Answer this question by computing a p-value for a
one-sided test.
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Hypothesis testing for a proportion

The null hypothesis is H0 : p = 0.25 and the alternative is HA : p > 0.25.
In the formulas, p0 = 0.25, the hypothesized value. We have
p̂ = 22/53 = 0.415 and

zobs =
0.415− 0.25√
(0.25)(0.75)/53

= 2.78

For this one-sided test, the p-value is the area to the right of 2.78 under a
standard normal curve. In R, this is

1-pnorm(2.78)

#[1] 0.002717945

A p-value of 0.0027 means that there is sufficient evidence to reject the
hypothesis, conclude that learning-impaired youngsters at the
Massachusetts General Hospital have higher proportion (greater than 25%)
of right-side heavier brains.
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Hypothesis testing for a proportion

#### Example: brain hemispheres

# Approximate normal test for proportion, without Yates

continuity correction

prop.test(22, 53, p = 0.25, alternative = "greater",

correct = FALSE)

##

## 1-sample proportions test without continuity correction

## data: 22 out of 53, null probability 0.25

## X-squared = 7.7044, df = 1, p-value = 0.002754

## alternative hypothesis: true p is greater than 0.25

## 95 percent confidence interval:

## 0.3105487 1.0000000

## sample estimates:

## p

## 0.4150943
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Hypothesis testing for a proportion
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Comparing two proportions

Just like we can test whether two populations have the same mean by
comparing two independent samples, we can also test whether two
populations have the same proportion by comparing two independent
samples.

In addtion, we can form confidence intervals for the difference in two
proportions.
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Comparing two proportions

Example. (Vitamin C) Two hundred and seventy nine (279) French skiers
were studied during two one-week periods in 1961. One group of 140
skiers receiving a placebo each day, and the other 139 receiving 1 gram of
ascorbic acid (Vitamin C) per day. The study was double blind — neither
the subjects nor the researchers knew who received which treatment. The
skiers getting a cold or not is recorded.

Want to compare the proportion of getting cold between the two groups.
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Comparing two proportions

I Use p̂1 − p̂2 to estimate the difference in proportions

I For a confidence interval, we follow the usual pattern of

best estimate± critical value × SE

p̂1 − p̂2 ± zcrit × SE(p̂1 − p̂2)

where

SE (p̂1 − p̂2) =

√
p̂1(1− p̂1)

n1
+

p̂2(1− p̂2)

n2
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Comparing two proportions

Hypothesis test, H0 : p1 = p2

I Test statistic:

zobs =
p̂1 − p̂2
SEtest

where

SEtest =

√
p(1− p)

n1
+

p(1− p)

n2
=

√
p(1− p)

(
1

n1
+

1

n2

)
with

p =
n1p̂1 + n2p̂2
n1 + n2

——-p is a pooled estimate of the common proportion
——-i.e., assuming that both populations have the same proportion
p = p1 = p2, you could pool all the data treating it as a single population to
get a more precise estimate of the proportion p.

I Compare the test statistic to corresponding critical values to make decisions
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Comparing two proportions

Comments:

Because the formulas for computing the SE of the CI and SE of the
hypothesis tests are different, it is possible that the conclusions reached by
hypothesis testing might not agree with whether or not the CI includes 0,
but such cases would be unusual.
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Comparing two proportions

To get back to the sample, we can perform both a CI and a hypothesis
test. It is convenient to arrange the data in a 2× 2 table.

Outcome Ascorbic acid Placebo

# with cold 17 31
# without cold 122 109

Totals 139 140

I Proportion of cold of the Ascorbic acid group is p̂1 = 17/139 = 0.122

I Proportion of cold of the Placebo group is p̂2 = 31/140 = 0.221

I Proportion of cold of the pooled sample is p = 48/279 = 0.172
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Comparing two proportions

Want to test
H0 : p1 = p2 vs p1 6= p2

I

p̂1 − p̂2 = 0.122− 0.221 = −0.99

I The SE values are

SECI =

√
0.221× (1− 0.22)

140
+

0.122× (1− 0.122)

139
= 0.04472

SEtest =

√
0.172× (1− 0.172)

(
1

139
+

1

140

)
= 0.0452

I The CI is

−0.99± 1.96(0.04472) = −0.99± 0.088 = (−0.187,−0.011)
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Comparing two proportions

I The z-test gives

zobs =
0.122− 0.221

0.0452
= −2.19

The p-value is

2*pnorm(-2.19)

#[1] 0.02852424

The area is multiplied by two because it is a two-sided test.
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Comparing two proportions

Findings from the experiment:

I Both the CI and the hypothesis test suggest that there is evidence
against the null hypothesis, conclude that the proportion of skiers
getting colds was not the same for those on placebo versus those on
Vitamin C.

I From the CI, a plausible effect for Vitamin C was that it made skiers
between 1% and 18.7% less likely to develop a cold. At the time the
study was controversial, as many studies since have not found an
association between Vitamin C use and cold prevention.

I Consider this was a randomized study, if all the other factors that will
affect the cold (exercises time/day, health condition, age etc) is the
same, this suggests that Vitamin C had a causal role in preventing in
colds.
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Comparing two proportions

#### Example, vitamin C

# Approximate normal test for two-proportions, without Yates

continuity correction

prop.test(c(17, 31), c(139, 140), correct = FALSE)

##

## 2-sample test for equality of proportions without continuity

## correction

##

## data: c(17, 31) out of c(139, 140)

## X-squared = 4.8114, df = 1, p-value = 0.02827

## alternative hypothesis: two.sided

## 95 percent confidence interval:

## -0.18685917 -0.01139366

## sample estimates:

## prop 1 prop 2

## 0.1223022 0.2214286
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Comparing two proportions within the same sample

Many surveys might have more than two categories.

I For example, during the 2016 election, registered voters might have
indicating favoring Clinton, Trump, or another candidate.
——A typical poll before the election might have had Clinton at 48% and
Trump at 44%.
—– These numbers add up to 92%, not 100%, and the remaining 8% might
have been due to undecided voters or due to voters supporting Gary Johnson
(Libertarian), Jill Stein (Green) or other less well known candidates.

I We might be interested in comparing whether 48% is “significantly” larger
than 44%. The idea is whether Clinton could have felt reasonably confident
that she had more support than Trump, or whether the sample was
consistent with no difference in support in the population between the two
candidates.

I This is not a two sample problem because we are trying to compare two
proportions from within the same sample. The two proportions are not
independent. In particular, it would be impossible for both percentages to be
larger than 50%.
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Comparing two proportions within the same sample

Example: suppose the poll had 1000 respondents
——–with 480 supporting Clinton
—— 440 supporting Trump
——-50 supported Johnson
——- and 30 supported Stein.

How could we analyze the data to determine whether Clinton had a lead
that was “statistically significant”?
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Comparing two proportions within the same sample

Method 1: condition on respondents supporting either Clinton or Trump,
and ignore everyone else.

I Clinton’s proportion would be p̂1 = 480/920 = 0.522.
——- In other words, 52% of people (supporting either Clinton or
Trump) supported Clinton in this poll.

I Test whether this proportion was significantly larger than 50%.

prop.test(480,920)

#

# 1-sample proportions test with continuity correction

#

#data: 480 out of 920, null probability 0.5

#X-squared = 1.6533, df = 1, p-value = 0.1985

#alternative hypothesis: true p is not equal to 0.5

#95 percent confidence interval:

# 0.4888946 0.5543999
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Comparing two proportions within the same sample

The margin of error in this case is approximately

1.96
√

0.522(1− 0.522)/920 = 0.032

meaning 3.2%, which is very typical in these types of polls.

This margin of error is not for the 48%, but for the 52% conditional on
only Trump or Clinton in the sample. It would also not apply to the other
categories in the sample (Johnson and Stein).
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Comparing two proportions within the same sample

Method2: multinomial distribution.

I The multinomial distribution generalizes the binomial distribution to
when there are more than two categories. In the binomial distribution,
there are two categories: yes and no, or success and failure.

I The multinomial distribution allows any finite number of categories
and counts how many observation are in each category.
——– each observation is assumed to be independent, and belongs to
category i with probability pi , where p1 + p2 + · · ·+ pk = 1, and k is
the number of categories.
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Comparing two proportions within the same sample
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Comparing two proportions within the same sample

An example of a multinomial sample would be a bag of M&M candy

I assuming that the pieces are independent.

I n pieces of candy, with n1 brown, n2 yellow, n3 green, n4 orange, and
say n5 blue (assuming there are only 5 colors.

I The sample proportions are

p̂1 =
n1
n
, p̂2 =

n2
n
, p̂3 =

n3
n
, p̂4 =

n4
n
, p̂5 =

n5
n
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Comparing two proportions within the same sample

To get a CI, trom the properties of the multionial distribution, the idea is
to compute (as usual)

(p̂1 − p̂2)± zcritSE (p̂1 − p̂2)

I need to take into account the lack of independence between the two
samples.

I the formula is (for a 95% interval):

(p̂1 − p̂2)± 1.96

√
p̂1 + p̂2 − (p̂1 − p̂2)2

n
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Comparing two proportions within the same sample

For the Clinton-Trump example. We get

(0.48−0.44)±1.96

√
.48 + .44− (.48− .44)2

1000
= 0.04±0.059 ≈ (−.02, .10)

Note that if this sample has a reported margin of error of 3.2%, you might
be misled into thinking that 48% is significantly larger than 44%. Either
the conditional analysis or the multinomial analysis lead to the conclusion
that Clinton’s lead was actually within the margin of error.
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Goodness of fit tests

Another use of the multinomial distribution is to test whether proportions
in several categories are significantly different from expectation.
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Goodness of fit tests

Example: jury pool. The following data set was used as evidence in a
court case.

I The data represent a sample of 1336 individuals from the jury pool of
a large municipal court district for the years 1975–1977.

I The fairness of the representation of various age groups on juries was
being contested.
—— The strategy for doing this was to challenge the
representativeness of the pool of individuals from which the juries are
drawn.
——This was done by comparing the age group distribution within
the jury pool against the age distribution in the district as a whole,
which was available from census figures.
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Goodness of fit tests

Are the observed proportions reasonable given the census proportions?

Age Obs. Counts Obs. Prop. Census Prop.
18-19 23 0.017 0.061
20-24 96 0.072 0.150
25-29 134 0.100 0.135
30-39 293 0.219 0.217
40-49 297 0.222 0.153
50-64 380 0.284 0.182
65-99 113 0.085 0.102
Total: 1336 1.000 1.000

I Let p18 be the proportion in the jury pool population between ages 18 and
19. Define p20, p25, p30, p40, p50, and p65 analogously.

I interested in testing that the true jury proportions equal the census
proportions, H0 : p18 = 0.061, p20 = 0.150, p25 = 0.135, p30 = 0.217,
p40 = 0.153, p50 = 0.182, and p65 = 0.102 against HA : not H0
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Goodness of fit tests

In a general case, the null hypothesis can be described as

H0 : p1 = p01, p2 = p02, . . . , pk = p0k

The alternative is that at least one of the proportions doesn’t match the
hypothesized proportion.
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Goodness of fit tests

The idea for the test statistic is to compare the observed counts with the
expected counts (observed versus expected number of individuals in each
category): The test statistic for this problem is (with k categories):

χ2
obs =

k∑
i=1

(Oi − Ei )
2

Ei

where Oi is the observed count, Ei is the expected count with Ei = np0i .
In terms of proportions, this can be written as

χ2
obs = n

k∑
i=1

(p̂i − p0i )
2

p0i
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Goodness of fit tests

The test statistic looks different from others you have seen so far, but if
you think of it this way

χ2
obs =

k∑
i=1

(
Oi − Ei√

Ei

)2

Then the terms

Zi =
Oi − Ei√

Ei

look like Z -scores and are also called category residuals:

Z =
x − µ√
σ2
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Goodness of fit tests

Under the null hypothesis, the statistic χ2
obs has a chi-square distribution

with with k − 1 degrees of freedom.
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Goodness of fit tests

Large values of χ2
obs suggest that the proportions differ from expectation.

We reject H0 for sufficiently large values of χ2
obs .
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Goodness of fit tests

Example: jury pool

I Let p18 be the proportion in the jury pool population between ages 18
and 19.

I Define p20, p25, p30, p40, p50, and p65 analogously.

I Interested in testing that the true jury proportions equal the census
proportions, H0 : p18 = 0.061, p20 = 0.150, p25 = 0.135, p30 = 0.217,
p40 = 0.153, p50 = 0.182, and p65 = 0.102 against HA : not H0
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Goodness of fit tests

As an example of how to compute the expected count, we have

E18 = 1336× 0.061 = 81.5

The observed number from this category is the observed proportion times
the sample size of 1336:

O18 = 1336× 0.017 ≈ 23

The contribution to the χ2
obs statistic from this category is therefore

(23− 81.5)2/81.5 = 41.99.

The Pearson χ2 statistic is

χ2
obs = (−6.48)2+(−7.37)2+(−3.45)2+0.182+6.482+8.782+(−1.99)2 = 231.26
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Goodness of fit tests

The critical value for the χ2 test at the α = 0.05 level can be obtained
from R by

qchisq(1-.05,6)

#[1] 12.59159

I The expected value of a χ2 random variable is it’s degrees of freedom

E (χ2(v)) = v

I Reject H0 if the χ2
obs is much larger than the degrees of freedom.

I In this case, our observed test statistic is 231.26, which is much larger
than the critical value of 12.59, so there is strong evidence that the
ages in the jury pool have a different distribution than that of the
general population.
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Goodness of fit tests

To use the p-value approach instead of the critical value, you can use

1-pchisq(231.26,6)

#[1] 0

Here the p-value is so small that it is 0 to many decimal places.
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Goodness of fit tests

Here is a way to implement this in R:

#### Example: jury pool

jury <- read.table(text="

Age Count CensusProp

18-19 23 0.061

20-24 96 0.150

25-29 134 0.135

30-39 293 0.217

40-49 297 0.153

50-64 380 0.182

65-99 113 0.102

", header=TRUE)

ADA1 November 12, 2018 56 / 108



Goodness of fit tests

Here is a way to implement this in R:

x.summary <- chisq.test(jury$Count, correct = FALSE,

p = jury$CensusProp)

# print result of test

x.summary

##

## Chi-squared test for given probabilities

##

## data: jury$Count

## X-squared = 231.26, df = 6, p-value < 2.2e-16
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Goodness of fit tests

To see how much individual categories deviate from the null hypothesis, it is
helpful to look at the residuals. Here is a way to make a table:

x.table <- data.frame(age = jury$Age

, obs = x.summary$observed

, exp = x.summary$expected

, res = x.summary$residuals

, chisq = x.summary$residuals^2

, stdres = x.summary$stdres)

x.table

## age obs exp res chisq stdres

## 1 18-19 23 81.496 -6.4797466 41.98711613 -6.6869061

## 2 20-24 96 200.400 -7.3748237 54.38802395 -7.9991194

## 3 25-29 134 180.360 -3.4520201 11.91644267 -3.7116350

## 4 30-39 293 289.912 0.1813611 0.03289186 0.2049573

## 5 40-49 297 204.408 6.4762636 41.94199084 7.0369233

## 6 50-64 380 243.152 8.7760589 77.01921063 9.7033764

## 7 65-99 113 136.272 -1.9935650 3.97430128 -2.1037408
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Goodness of fit tests

Recall that the test statistic was χ2
obs ≈ 231.

I The greatest contribution to this score was category 6, with a contribution
of 77.
—— This is for 50–64 year olds.
——-It’s residual was 8.77 (8.772 ≈ 77), which is positive, meaning that it
had an excess of jury members.
—– It’s expected number of jurors (out of 1336) was 243, but 380 were in
that age category

I 18-19 year olds had an expected representation of about 81 jurors, but only
23 jurors were of that age.
—– This resulted in a negative residual of -6.48, and a contribution of 41.99
to the χ2

obs statistic.

I The categories of 30–39 year olds and those aged 65 and over were the most
consistent with the null hypothesis.

I In some cases, you might see that one category has much larger deviation
from expectation than other categories. In this case, quite a few categories
deviated quite strongly from expectation under the null hypothesis.
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Goodness of fit tests

A follow up to the χ2 test is to get confidence intervals for the proportions in
each category. Here is an example of doing this for the age of jurors data. Here a
confidence level of 1− .05/7 is used for Bonferroni adjustments.

b.sum1 <- prop.test(jury$Count[1], sum(jury$Count),

p = jury$CensusProp[1],conf.level=1-.05/7)

b.sum2 <- prop.test(jury$Count[2], sum(jury$Count),

p = jury$CensusProp[2],conf.level=1-.05/7)

b.sum3 <- prop.test(jury$Count[3], sum(jury$Count),

p = jury$CensusProp[3],conf.level=1-.05/7)

b.sum4 <- prop.test(jury$Count[4], sum(jury$Count),

p = jury$CensusProp[4],conf.level=1-.05/7)

b.sum5 <- prop.test(jury$Count[5], sum(jury$Count),

p = jury$CensusProp[5],conf.level=1-.05/7)

b.sum6 <- prop.test(jury$Count[6], sum(jury$Count),

p = jury$CensusProp[6],conf.level=1-.05/7)

b.sum7 <- prop.test(jury$Count[7], sum(jury$Count),

p = jury$CensusProp[7],conf.level=1-.05/7)
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Goodness of fit tests

b.sum <- data.frame(

rbind( c(b.sum1$p.value, b.sum1$conf.int)

, c(b.sum2$p.value, b.sum2$conf.int)

, c(b.sum3$p.value, b.sum3$conf.int)

, c(b.sum4$p.value, b.sum4$conf.int)

, c(b.sum5$p.value, b.sum5$conf.int)

, c(b.sum6$p.value, b.sum6$conf.int)

, c(b.sum7$p.value, b.sum7$conf.int)

)

)

names(b.sum) <- c("p.value", "CI.lower", "CI.upper")

b.sum$Age <- jury$Age

b.sum$CensusProp <- jury$CensusProp
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Goodness of fit tests

> b.sum

p.value CI.lower CI.upper Age CensusProp

1 3.362577e-11 0.009647384 0.03018145 18-19 0.061

2 1.709175e-15 0.054740455 0.09367530 20-24 0.150

3 2.410326e-04 0.079962727 0.12501521 25-29 0.135

4 8.636174e-01 0.190060970 0.25162323 30-39 0.217

5 2.579364e-12 0.192891624 0.25474777 40-49 0.153

6 4.126666e-22 0.252099261 0.31911186 50-64 0.182

7 3.953815e-02 0.065941074 0.10777784 65-99 0.102
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Goodness of fit tests

Here is an example from genetics. In this case, a little bit of biology is
needed to get the expected counts or proportions. (The example is from
Falconer and Mackay, Quantitative Genetics).

For the M-N blood group, a sample of individuals from Iceland is given
with the following genotype counts, both observed and expected:

Genotypes
MM MN NN Total

Observed 233 385 129 747
Expected 242.36 366.26 138.38 747

(Oi − Ei )
2/Ei 0.362 0.959 0.634 1.956
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Goodness of fit tests

To compute the expected values, we need a little bit of genetics here. The
idea is that each person has two alleles, so there are 233 individuals with
two copies of the M allele, 385 individuals with one M and one N, and 129
with two Ns. The total number of individuals is 233 + 385 + 129 = 747,
but the total number of allele copies is 747 ∗ 2 = 1494.
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Goodness of fit tests

The total number of copies of M in the sample is 233× 2 + 385, because
each person with MM contributes two Ms to the sample, and each person
with MN contributes one M. Thus the total number of Ms is
233 ∗ 2 + 385 = 851. The total number of N alleles in the sample is
385 + 2× 129 = 643. The probability of a random allele being M or N is

P(M) =
851

851 + 643
= 0.5696, P(N) =

643

851 + 643
= 0.4304

The expected proportion of individuals with genotype MM is
P(M)× P(M) = 0.3245 (assuming that alleles are random), with MN is
2P(M)P(N) = 0.4903 and with NN is P(N)× P(N) = 0.1852. The
expected counts are these expected proportions multiplied by the sample
size of 747 individuals. For example, 747× 0.3245 ≈ 242.36.
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Goodness of fit tests

> o <- c(233, 385, 129)

m <- 233*2+385

n <- 385+2*129

pm <- m/(m+n)

pn <- n/(m+n)

eMM <- pm^2*sum(o)

e <- c(pm^2,2*pm*pn,pn^2)*sum(o)

chisq <- sum((o-e)^2/e)

#[1] 1.955521

(o-e)^2/e

#[1] 0.3622291 0.9588085 0.6344837
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Goodness of fit tests

To use R to conduct the test, we need to specify the expected proportions.
Because the p-value is greater than 0.05, we conclude that that there is
not sufficient evidence to reject the hypothesis that the proportions are
consistent with their expected values.

a <- chisq.test(o,p=c(pm^2,2*pm*pn,pn^2))

a

#

# Chi-squared test for given probabilities

#

#data: o

#X-squared = 1.9555, df = 2, p-value = 0.3762
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Goodness of fit tests

A nice way to visualize what is happening is to plot the observed versus
expected counts. This can be done by making a matrix where each row is
the frequency count. In this case, the rows are for observed and expected.

counts <- c(o,e)

counts <- matrix(counts,ncol=3,byrow=T)

barplot(counts,beside=TRUE,ylim=c(0,400),ylab="count",

cex.lab=1.3)

legend(1,400,legend=c("Observed","Expected"),

fill=c("black","grey"),cex=1.5)

axis(1,at=c(2,5,8),c("MM","MN","NN"),cex=1.5)
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Goodness of fit tests

Comparison of observed versus expected counts.
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2× 2 tables and conditional probability

Contingency tables, particularly 2× 2 tables, can be a good way to
understand conditional probabilities.

Here is an example for a 2× 2 table relating sex and migraine headaches,
based on a survey of 50 women and 50 men:

Migraines
Yes No Total

Women 12 38 50
Men 5 45 50

Total 17 83 100
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Conditional probability

We can ask questions like:

I what is the probability that a person experienced a migraine given
that they were a woman?

I What is the probability that someone was a man, given that they
experienced a migraine?

From probability theory, we can use

P(A|B) =
P(A and B)

P(B)

when individuals are sampled randomly, we can think of this as

P(A|B) =
# in category A and category B

# in category B
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2× 2 tables and conditional probability

Migraines
Yes No Total

Women 12 38 50
Men 5 45 50

Total 17 83 100

I P(woman|migraine) = 12
17 ≈ 0.71

I P(migraine|man) = 5
50 = 0.1
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2× 2 tables

I want to test whether the proportion of men versus women experiencing
migraines was different for the population that was sampled
—-could use either a test of proportions or a χ2 test.

prop.test(c(12,38),c(17,83),correct=FALSE)

prop.test(c(12,5),c(50,50),correct=FALSE)

I Both commands will result in the exact same p-value, but have different
interpretations in terms of the CI.

I The first tests whether the proportion of women is the same among those
experiencing migraines versus those not experiencing migraines.
—-uses the proportions 12/17 and 38/83

I The second tests whether the proportion experiencing migraines is different
for women versus men. The second compares 12/50 versus 5/50

I Both are equivalent to the χ2 test of whether there is an association
between sex and migraines.
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prop.test(c(12,38),c(17,83),correct=FALSE)

2-sample test for equality of proportions without

continuity correction

data: c(12, 38) out of c(17, 83)

X-squared = 3.4727, df = 1, p-value = 0.06239

alternative hypothesis: two.sided

95 percent confidence interval:

0.006385628 0.489716428

sample estimates:

prop 1 prop 2

0.7058824 0.4578313
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prop.test(c(12,5),c(50,50),correct=FALSE)

2-sample test for equality of proportions without

continuity correction

data: c(12, 5) out of c(50, 50)

X-squared = 3.4727, df = 1, p-value = 0.06239

alternative hypothesis: two.sided

95 percent confidence interval:

-0.004666056 0.284666056

sample estimates:

prop 1 prop 2

0.24 0.10
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> obsn <- c(12,38,5,45)

> data <- matrix(obsn,byrow=T,ncol=2)

> chisq.test(data,correct=FALSE)

Pearson’s Chi-squared test

data: data

X-squared = 3.4727, df = 1, p-value = 0.06239
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2× 2 tables

Here hypothesis test shows weak evidence of a difference, with a p-value
greater than 0.05.

At the α = .05 level, there is insufficient evidence to conclude that there is
a difference in proportions experiencing migraines at the population level.
—-However, the p-value is close to .05. The confidence barely included 0,
with difference ranging from women experiencing between -0.5% to 28%
more migraines than men.
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Testing for Homogeneity of Proportions

I The “test of homogeneity” is a way of determining whether two or
more DIFFERENT POPULATIONS (or GROUPS) share the same
distribution of a SINGLE CATEGORICAL VARIABLE.
——- do people of different races have the same proportion of
smokers to non-smokers
——- do different education levels have different proportions of
Democrats, Republicans, and Independent.

I The data are collected by randomly sampling from each sub-group
separately. (Say, 100 blacks, 100 whites, 100 American Indians, and
so on.) The null hypothesis is that each sub-group shares the same
distribution of another categorical variable. (Say, chain smoker,
occasional smoker, non-smoker.)
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I The test of homogeneity expands on the two-proportion z-test. The
two proportion z-test is used when the response variable has only two
categories as outcomes and we are comparing two groups.

I The homogeneity test is used if the response variable has several
outcome categories, and we wish to compare two or more groups.

H0 : plevel i, 1 = plevel i, 2 = · · · = plevel i, c

where i = 1, 2 · · · , r are r categories of variable X and c is the
number of different populations, i.e., the proportion of X is the same
in all the c populations studied.
Hα: At least one proportion of X is not the same.
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Testing for Homogeneity of Proportions

Example: compare numbers of voters for Clinton and Trump in two polls,
one for ABC and one for Fox.

I The polls (only include Clinton and Trump) can be summarized as
follows

Candidate ABC Fox Total

Clinton 532 537 1069
Trump 488 501 989

Total 1020 1038 2058
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Testing for Homogeneity of Proportions

The proportions can be summarized as follows

Candidate ABC Fox Pooled
Clinton 0.5216 0.5173 0.5194
Trump 0.4784 0.4827 0.4806
Total 1 1 1

where the pooled proportions are the Row Totals divided by the total sample
size of 2058.

I To formally compare the observed proportions, one might view the data as
representative sample of voters collected by the two broadcasting companies.
—–Assuming independent samples collected by the two companies (two
populations)
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Testing for Homogeneity of Proportions

The proportions can be summarized as follows

Candidate ABC Fox Pooled
Clinton 0.5216 0.5173 0.5194
Trump 0.4784 0.4827 0.4806
Total 1 1 1

where the pooled proportions are the Row Totals divided by the total sample
size of 2058.

I The null hypothesis states that the distribution of voters for Clinton and
Trump is identical whether it is done by ABC or by Fox

H0 : pClinton, ABC = pClinton, Fox

—-Column proportion sum to 1, therefore the null is the same as proportion
of voters for Clinton is the same reported by ABC and Fox
—-This is the same as a two sample proportion test
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I For a two-by-two table of counts, the chi-squared test of homogeneity
of proportions is identical to the two-sample proportion test we
discussed earlier.

I In general, we have one categorical variables that has r levels, and c
different populations, then we can make an r × c contingency table
(think r for rows and c for columns).
—– The χ2 test then tests whether the distribution of row levels are
identical across the column levels.

I The degrees of freedom for this type of test is (r − 1)× (c − 1).
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Testing for Homogeneity of Proportions

To implement the test:

1. Compute the (estimated) expected count for each cell in the table as
follows:

E =
Row Total× Column Total

Total Sample Size
.

2. Compute the Pearson test statistic

X 2
s =

∑
all cells

(O − E )2

E
,

where O is the observed count.

3. For a size α test, reject the hypothesis of homogeneity if Xs ≥ χ2
crit,

where χ2
crit is the upper α critical value from the chi-squared

distribution with df = (r − 1)(c − 1), r is the number of rows, and c
is number of columns
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Testing for Homogeneity of Proportions

For a chi-square test on a 2× 2 table, you can enter the table as a matrix. For
prop.test(), give a vector of counts for one category, and a vector of sample
sizes for independent samples.

x <- c(532,537,488,501)

x <- matrix(x,ncol=2,byrow=T)

chisq.test(x,correct=FALSE)

# Pearson’s Chi-squared test

#X-squared = 0.036834, df = 1, p-value = 0.8478

#

prop.test(c(532,537),c(1020,1038),correct=FALSE)

#

2-sample test for equality of proportions without continuity

#

#data: c(532, 537) out of c(1020, 1038)

#X-squared = 0.036834, df = 1, p-value = 0.8478
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Testing for Homogeneity of Proportions

Both the independent proportions test and χ2 test lead to exactly same
conclusion,
—–namely that the ABC and Fox polls did not have signficantly different
proportions of respondents supporting Clinton versus Trump conditional on
respondents supporting either Clinton or Trump.

The fact that the two analyses lead to the same conclusion (and p-value)
is related to the fact that the square of a standard normal random variable
has a χ2 distribution with one degree of freedom.
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ABC and Fox example continued

Consider again the data for ABC versus Fox polls. This time, we can use
all five categories: Clinton, Trump, Johnson, Stein, and Other. Our
contingency table is then 5× 2 (or you can arrange it to be 2× 5).

Company ABC Fox Total

Clinton 532 537 1069
Trump 488 501 989

Johnson 44 85 129
Stein 11 37 48
Other 34 61 95

Total 1109 1221 2330

I Expected counts can be obtained by taking the row total times the
column total divided by the overall total.
—-For example, the expected count for Clinton and ABC is
1069× 1109/2330 = 508.8073.
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Let’s organize the contingency table in 2× 5 to save space.

Company Clinton Trump Johnson Stein Other Total

ABC 532 488 44 11 34 1109
Fox 537 501 85 37 61 1221

Total 1069 989 129 48 95 2330
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o <- c(532,488,44,11,34,537,501,85,37,61)

o <- matrix(o,byrow=T,ncol=5)

a <- chisq.test(o,correct=FALSE)

a

# Pearson’s Chi-squared test

#X-squared = 29.667, df = 4, p-value = 5.721e-06

a$expected

# [,1] [,2] [,3] [,4] [,5]

#[1,] 508.8073 470.73 61.39957 22.84635 45.21674

#[2,] 560.1927 518.27 67.60043 25.15365 49.78326

1109*1069/2330

#[1] 508.8073
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I Based on the X 2 test, the distribution of voters for the different
candidates are different from Fox and ABC.

I To get an idea of which categories deviate most from expectation, we
can look at the contribution to the X 2 test. The X 2 test statistic is
the sum of the squared residuals.

# also try (o-a$expected)^2/a$expected

a$residuals

# [,1] [,2] [,3] [,4] [,5]

#[1,] 1.028193 0.7959858 -2.220526 -2.478427 -1.668080

#[2,] -0.979902 -0.7586007 2.116235 2.362023 1.589736

(a$residuals)^2

# [,1] [,2] [,3] [,4] [,5]

#[1,] 1.057181 0.6335933 4.930736 6.142602 2.782492

#[2,] 0.960208 0.5754750 4.478449 5.579153 2.527259
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I The biggest contributions to the χ2 statistic come from columns 3
and 4 in the residuals or squared residuals.
—–Here the contribution to the χ2 statistic is greater than 4 for each
category.
—– These columns are for the support for Johnson and Stein.

I The critical value for the χ2 test here is based on
(2− 1)× (5− 1) = 4 degrees of freedom, and is

qchisq(.95,4)

#[1] 9.487729
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Testing for Independence

The “test of independence” is a way of determining whether TWO
CATEGORICAL VARIABLES are associated with one another in ONE
SINGLE POPULATION.
——For example, we draw a single group of 200 subjects and record their
gender information, and their political affiliation. Trying to see if there is a
relationship between the gender and political affiliation.

H0 : Xand Y are independent v.s.Hα : Xand Y are not independent

Recall: The “test of homogeneity” is a way of determining whether two or
more DIFFERENT POPULATIONS (or GROUPS) share the same
distribution of a SINGLE CATEGORICAL VARIABLE.
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Testing for Independence

I The row and column classifications for a population where each individual is
cross-classified by two categorical variables are said to be independent if
each population cell proportion in the two-way table is the product of the
proportion in a given row and the proportion in a given column.

H0 : pij = pi+ × p+j

where pi+ is row total divided by total, and p+j is column total divided by
total.

I Mathematically, one can show that independence is equivalent to
homogeneity of proportions.
—- In particular, the two-way table of population cell proportions satisfies
independence if and only if the population column proportions are
homogeneous. If the population column proportions are homogeneous then
so are the population row proportions.
—-This suggests that a test for independence or no association between
two variables based on a cross-sectional study can be implemented using the
chi-squared test for homogeneity of proportions.
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Testing for Independence

Homogeneity and independence sound the same. The difference is a
matter of design.

I In the test of independence, observational units are collected at
random from ONE POPULATION and TWO CATEGORICAL
VARIABLES are observed for each observational unit. We are trying
to see if there is an association between the two variables or if the
two variables are independent.

I In the test of homogeneity, the data are collected by randomly
sampling from each sub-group (SEVERAL POPULATIONS)
separately. (Say, 100 blacks, 100 whites, 100 American Indians, and
so on.) The null hypothesis is that each sub-group shares the same
distribution of A SINGLE CATEGORICAL VARIABLE. (Say, chain
smoker, occasional smoker, non-smoker).
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Chi-square type tests

I The default for the X 2 test in R is to use the continuity correction,
sometimes called Yates’ continuity correction. Here the formula is
slightly different:

X 2
Yates =

k∑
i=1

(|Oi − Ei | − 0.5)2

Ei

This formula is intended to make the X 2 test more conservative when
sample sizes are low.

I Based on simulations, it seems that the X 2 test without continuity
correction already tends to be conservative when sample sizes are low,
meaning that it is difficult to reject the null hypothesis for small
sample sizes.

I Consequently, we tend not to use the continuity correction option.
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Chi-square type tests

A common rule of thumb is to say that the X 2 test is reasonable when all
expected cell counts are at least 5. Here is more specific advice:

“No more than 20% of the expected counts are less than 5 and all
individual expected counts are 1 or greater” (Yates, Moore, & McCabe,
The Practice of Statistics,1999, p. 734).

If your sample sizes are small for certain categories, R is likely to print out
warnings, but will still compute results.
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2× 2 tables with correlated observations

Sometimes 2× 2 tables are presented with correlated observations.

For example, if a sample of people is first given treatment A, asked to
record whether or not symptoms occur, and then later the same group is
given treatment B, again asked to record whether the symptoms occur,
then you have two sets of proportions but they are correlated rather than
independent samples.

For a nonmedical example, you could track a sample of individual’s
response, for example to who they plan to vote for, over time to see if
same individuals change their opinion. This is different from taking a
second sample of an independent set of individuals.
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2× 2 tables with correlated observations

Here an example looks at presidential approval (example from Agresti,
1990, Categorical Data Analysis).

I The data is from a sample of 1600 voter-aged people who were asked
whether they approved or disapproved of the president two times
separated by one month.

I someone who approves is likely to continue to approve one month
later, and someone who disapproves is likely to disapprove one month
later. What is interesting is how many people change their minds.

I Here is the data:

Second survey
First Survey approve disapprove total

approve 794 150 944
disapprove 86 570 656

total 880 720 1600
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2× 2 tables with correlated observations

Second survey
First Survey approve disapprove total

approve 794 150 944
disapprove 86 570 656

total 880 720 1600

I The diagonals on the table represent people who’s opinion of the
president didn’t change.

I The off-diagonals represent those who changed their mind.
—-We see that 150 people changed from approval to disapproval,
while 86 people changed from disapproval to approval.
—- This means that the approval rating went down for this sample.
—- The approval ratings started at 944/1600 = 59% from the first
survey to 880/1600 = 55% in the second survey.
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Second survey
First Survey approve disapprove total

approve 794 150 944
disapprove 86 570 656

total 880 720 1600

From independent samples each with a sample size of 1600, we would
check whether 59% is significantly different from 55%. (This would give a
p-value of .022).
—– we can instead check, among those who changed their mind, are the
150 who went from approval to disapproval significantly larger than the 86.
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2× 2 tables with correlated observations

In McNemar’s test, let

p̂AA be the proportion that approved both times

p̂DD be the proportion that disapproved both times

p̂AD be the proportion that approved only the first time

p̂DA be the proportion that approved only the second time

p̂A+ be the proportion that approved the first month (i.e.,
944/1600 = 59%)

p̂+A be the proportion that approved the second month (i.e.,
880/1600 = 55%)
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2× 2 tables with correlated observations

A Confidence Interval for the difference is

p̂A+ − p̂+A ± zcritSE

where

SE =

√
p̂A+(1− p̂A+) + p̂+A(1− p̂+A)− 2(p̂AAp̂DD − p̂AD p̂DA)

n

Plugging in the numbers, we get for the SE√
(.59)(.41) + (.55)(.45)− 2((.496)(.356)− (.094)(.054))

1600
= .0095

The 95% CI is

(0.59− 0.55)± 0.019 = (0.021, 0.059)

Thus an estimate of the change in approval rating is that it decreased by
between 2 and 6% for the population represented by this sample.
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2× 2 tables with correlated observations

Hypothesis test

zobs =
p̂A+ − p̂+A

SE
=

nAD − nDA√
nAD + nDA

where

SE =

√
p̂A+p̂+A − 2p̂AA

n

I The numerator is the difference in the off-diagonals, and the
denominator is the square root of the sum of the off-diagonals.

I The numbers on the diagonals make no difference to the test. We are
only interested in those people who changed their minds, and whether
among those who changed their minds, the direction of the change
was larger in one direction than the other.
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correlated 2× 2 tables

The hypothesis test is implemented in R

x <- c(794,150,86,570)

# try x <- c(1,150,86,10000) results are the same

x <- matrix(x,byrow=T,ncol=2)

mcnemar.test(x)

# McNemar’s Chi-squared test with continuity correction

#

#data: x

#McNemar’s chi-squared = 16.818, df = 1, p-value = 4.115e-05

ADA1 November 12, 2018 104 / 108



correlated 2× 2 tables

It is interesting to compare the results if the data had been two
independent samples, each of size 1600, with the observed proportions of
59% and 55%.

o <- c(944,656,880,720)

o <- matrix(o,ncol=2,byrow=T)

prop.test(o,correct=FALSE)

#X-squared = 5.2224, df = 1, p-value = 0.0223

#alternative hypothesis: two.sided

#95 percent confidence interval:

# 0.005721636 0.074278364

#sample estimates:

#prop 1 prop 2

# 0.59 0.55
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correlated 2× 2 tables

You can also use the following to get the same results

prop.test(c(944,880),c(1600,1600),correct=FALSE)

2-sample test for equality of proportions without

continuity correction

data: c(944, 880) out of c(1600, 1600)

X-squared = 5.2224, df = 1, p-value = 0.0223

alternative hypothesis: two.sided

95 percent confidence interval:

0.005721636 0.074278364

sample estimates:

prop 1 prop 2

0.59 0.55
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Relative risk and odds ratio

In medical examples, we often interpret the relative risk and odds ratio.

Outcome Exposed population non-exposed population

Diseased p1 p2
Non-diseased 1− p1 1− p2

I Relative ratio
RR = p1/p2

is the probability of disease in the exposed population divided by the
probability in the non-exposed population.

I The odds of having the disease for the exposed population is
p1/(1− p1).

I The odds of having the disease for the non-exposed populatin is
p2/(1− p2).

I The odds ratio is

OR =
p1/(1− p1)

p2/(1− p2)
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Interpreting odds ratios

I Let’s say that the probability of success is 0.8, thus

p = 0.8, q = 1− p = 0.2

I The odds of success are defined as
odds(success) = p/q = 0.8/0.2 = 4,
—- that is, the odds of success are 4 to 1.

I The odds of failure would be
odds(failure) = q/p = 0.2/0.8 = 0.25,
—-that is, the odds of failure are 1 to 4.

I Odds ratio 1
OR1 = odds(success)/odds(failure) = 4/0.25 = 16
the odds of success are 16 times greater than for failure.

I Odds ratio 2
OR2 = odds(failure)/odds(success) = 0.25/4 = 0.0625
the odds of failure are one-sixteenth the odds of success.
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