Stat 427/527: Advanced Data Analysis I

Chapter 4: Checking Assumptions

Instructor: Yan Lu

- Statistical methods make assumptions about the data collection process and the shape of the population distribution.
- If you reject the null hypothesis in a test, then a reasonable conclusion is that the null hypothesis is false, provided all the distributional assumptions made by the test are satisfied.

—-If the assumptions are not satisfied then that alone might be the cause of rejecting H_0 .

—-Additionally, if you fail to reject H_0 , that could be caused solely by failure to satisfy assumptions also.

 Hence, you should always check assumptions to the best of your abilities.

Three basic assumptions

- Data are a random sample.
- The population frequency curve is normal.
- For the pooled variance two-sample test the population variances are also required to be equal.

Testing Normality

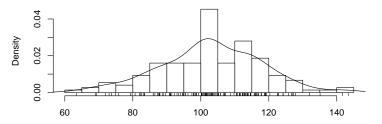
An informal test of normality can be based on a *normal scores* plot, sometimes called a *rankit plot* or a *normal probability* plot or a *normal QQ plot* (QQ = quantile-quantile).

- plot the quantiles of the data against the quantiles of the normal distribution, or expected normal order statistics (in a standard normal distribution) for a sample with the given number of observations.
- The normality assumption is plausible if the plot is fairly linear.

Intro Testing Normality Testing Equal Population Variances

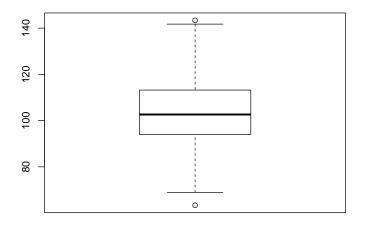
Start with simulated data from a normal distribution.

```
#### sample from normal distribution
x1 <- rnorm(150, mean = 100, sd = 15)
par(mfrow=c(2,1))
# Histogram overlaid with kernel density curve
hist(x1, freq = FALSE, breaks = 20)
points(density(x1), type = "1")
rug(x1)</pre>
```

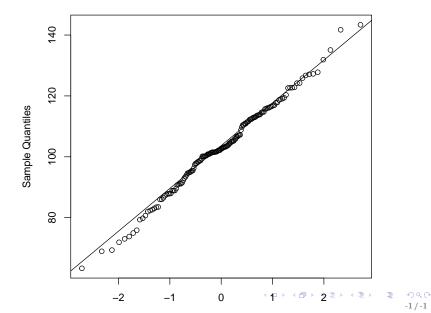
x1

boxplot boxplot(x1)



< □ > < @ > < 言 > < 言 > こ の < ⊙ -1/-1

```
#### QQ plots
# R base graphics
par(mfrow=c(1,1))
# plots the data vs their normal scores
qqnorm(x1)
# plots the reference line
qqline(x1)
```

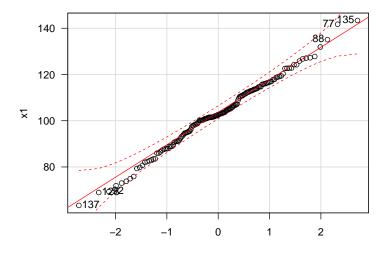


Normal Q-Q Plot

add confidence intervals (point-wise)

```
par(mfrow=c(1,1))
# Normality of Residuals
#install.packages("car")
library(car)
# qq plot for studentized resid
 las = 1 : turns labels on y-axis to
#
               read horizontally
#
#
   id.n = n: labels n most extreme observations,
#
            and outputs to console
#
   id.cex = 1 : is the size of those labels
#
   lwd = 1 : line width
qqPlot(x1, las = 1, id.n = 6, id.cex = 1, lwd = 1,
      main="QQ Plot")
```

-1/-1



QQ Plot

norm quantiles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Intro Testing Normality Testing Equal Population Variances

135 137 77 128 92 88 ## 150 1 149 2 3 148

The above are 6 most extreme observations, with the corresponding values

- x-axis is labelled "norm quantiles".
- This is the same graph as before, but with the normal scores identified with the percentiles to which they correspond.
- Only see a couple of data values outside the limits (in the tails, where it usually happens). Expect around 5% outside the limits, so there is no indication of non-normality here.

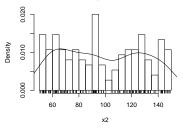
・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

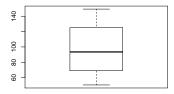
-1/-1

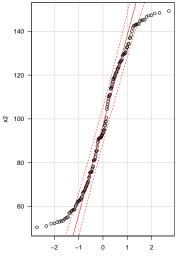
• We *did* sample from a normal population.

Light-tailed symmetric (Uniform)

```
#### Light-tailed symmetric (Uniform)
# sample from uniform distribution
x^2 <- runif(150, min = 50, max = 150)
par(mfrow=c(2,1))
# Histogram overlaid with kernel density curve
hist(x2, freq = FALSE, breaks = 20)
points(density(x2), type = "1")
rug(x2)
# boxplot
boxplot(x2)
par(mfrow=c(1,1))
qqPlot(x2, las = 1, id.n = 0, id.cex = 1, lwd = 1,
       main="QQ Plot")
```



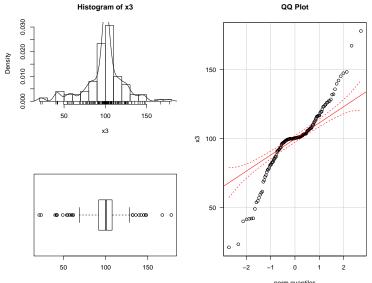


norm quantiles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Heavy-tailed (fairly) symmetric (Normal-squared)

```
#### Heavy-tailed (fairly) symmetric (Normal-squared)
# sample from normal distribution
x3.temp <- rnorm(150, mean = 0, sd = 1)
x3 <- sign(x3.temp)*x3.temp<sup>2</sup> * 15 + 100
par(mfrow=c(2,1))
# Histogram overlaid with kernel density curve
hist(x3, freq = FALSE, breaks = 20)
points(density(x3), type = "1")
rug(x3)
# boxplot
boxplot(x3, horizontal=TRUE)
par(mfrow=c(1,1))
qqPlot(x3, las = 1, id.n = 0, id.cex = 1, lwd = 1,
       main="QQ Plot")
```



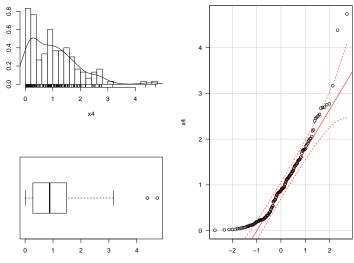
norm quantiles

<ロ> (四) (四) (三) (三) (三) -1 / -1

Right-skewed (Exponential)

```
#### Right-skewed (Exponential)
# sample from exponential distribution
x4 <- rexp(150, rate = 1)
par(mfrow=c(2,1))
# Histogram overlaid with kernel density curve
hist(x4, freq = FALSE, breaks = 20)
points(density(x4), type = "1")
rug(x4)
# boxplot
boxplot(x4, horizontal=TRUE)
par(mfrow=c(1,1))
qqPlot(x4, las = 1, id.n = 0, id.cex = 1, lwd = 1,
       main="QQ Plot")
```

Density

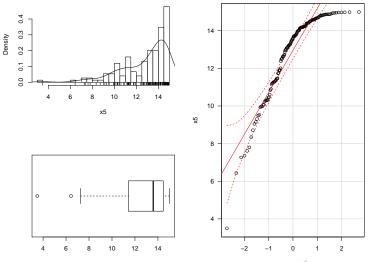


norm quantiles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Left-skewed (Exponential, reversed)

```
#### Left-skewed (Exponential, reversed)
# sample from exponential distribution
x5 < 15 - rexp(150, rate = 0.5)
par(mfrow=c(2,1))
# Histogram overlaid with kernel density curve
hist(x5, freq = FALSE, breaks = 20)
points(density(x5), type = "1")
rug(x5)
# boxplot
boxplot(x5, horizontal=TRUE)
par(mfrow=c(1,1))
qqPlot(x5, las = 1, id.n = 0, id.cex = 1, lwd = 1,
       main="QQ Plot")
```

norm quantiles

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Comments

Notice how striking is the lack of linearity in the QQ plot for all the non-normal distributions

—-The boxplot of the symmetric light-tailed distribution looks fairly good, however the QQ plot show the deviations.

---The QQ plot is a sensitive measure of normality.

Let us summarize the patterns we see regarding tails in the plots:

	Tail	
Tail Weight	Left	Right
Light	Left side of plot	Right side of plot
	points left	points right
Heavy	Left side of plot	Right side of plot
	points down	points up

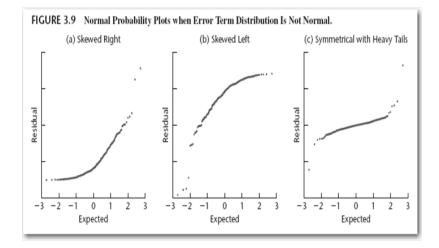


Figure 1 : Normal probability plots when error term distribution is not normal

Formal Tests of Normality

- ► A formal test of normality is based on the **correlation** between the data and the normal scores.
- The correlation is a measure of the strength of a linear relationship,

—-with the sign of the correlation indicating the direction of the relationship (that is, + for increasing relationship, and - for decreasing).

- The correlation varies from -1 to +1.
 —In a normal scores plot, you are looking for a correlation close to +1.
- Normality is rejected if the correlation is too small.

R has several tests of normality.

- Shapiro-Wilk test shapiro.test() is a base function.
- The R package nortest has some others:

Extreme outliers and skewness have the biggest effects on standard methods based on normality.

- The Shapiro-Wilk (SW) test is better at picking up these problems than the Kolmogorov-Smirnov (KS) test.
- Tests for normality may have low power in small to moderate sized samples. Visual assessment of normality is often more valuable than a formal test.

Normal distribution

```
shapiro.test(x1)
##
##
    Shapiro-Wilk normality test
##
## data: x1
## W = 0.99316, p-value = 0.6978
library(nortest)
ad.test(x1)
##
##
    Anderson-Darling normality test
##
## data: x1
## A = 0.41369, p-value = 0.3328
cvm.test(x1)
##
##
    Cramer-von Mises normality test
##
## data: x1
\#\# W = 0.080059, p-value = 0.2052
```

Light-tailed symmetric

```
shapiro.test(x2)
##
##
    Shapiro-Wilk normality test
##
## data: x2
## W = 0.93579, p-value = 2.566e-06
library(nortest)
ad.test(x2)
##
##
    Anderson-Darling normality test
##
## data: x2
## A = 2.724, p-value = 6.826e-07
cvm.test(x2)
##
    Cramer-von Mises normality test
##
##
## data: x2
## W = 0.40862, p-value = 2.101e-05
```

Heavy-tailed (fairly) symmetric

```
shapiro.test(x3)
##
##
    Shapiro-Wilk normality test
##
## data: x3
## W = 0.92729, p-value = 6.459e-07
library(nortest)
ad.test(x3)
##
##
    Anderson-Darling normality test
##
## data: x3
## A = 4.7926, p-value = 6.396e-12
cvm.test(x3)
##
    Cramer-von Mises normality test
##
##
## data: x3
## W = 0.97764, p-value = 1.809e-09
```

Right-skewed

```
shapiro.test(x4)
##
##
    Shapiro-Wilk normality test
##
## data: x4
## W = 0.89513, p-value = 7.087e-09
library(nortest)
ad.test(x4)
##
##
    Anderson-Darling normality test
##
## data: x4
## A = 3.1839, p-value = 5.132e-08
cvm.test(x4)
##
    Cramer-von Mises normality test
##
##
## data: x4
## W = 0.44715, p-value = 8.559e-06
```

Left-skewed

```
shapiro.test(x5)
##
    Shapiro-Wilk normality test
##
##
## data: x5
## W = 0.8547, p-value = 7.248e-11
library(nortest)
ad.test(x5)
##
    Anderson-Darling normality test
##
##
## data: x5
## A = 6.5439, p-value = 4.016e-16
cvm.test(x5)
## Warning in cvm.test(x5): p-value is smaller than 7.37e-10,
cannot be computed more accurately
##
    Cramer-von Mises normality test
##
##
## data: x5
## W = 1.1491, p-value = 7.37e-10
```

Example: Paired Differences on Sleep Remedies The following data give the amount of sleep

- gained in hours from two sleep remedies, A and B,
- 10 individuals who have trouble sleeping an adequate amount were observed
- Negative values imply sleep loss.
- In 9 of the 10 individuals, the sleep gain on B exceeded that on A.

・ロン ・四 ・ ・ ヨン ・ ヨン … ヨ

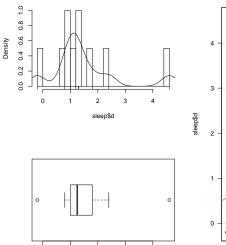
-1/-1

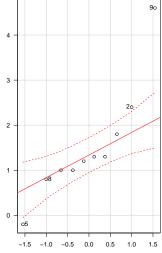
```
#### Example: Paired Differences on Sleep Remedies
# Data and numerical summaries
a <- c( 0.7, -1.6, -0.2, -1.2, 0.1, 3.4, 3.7,
       0.8, 0.0, 2.0)
b <- c( 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5,
      1.6, 4.6, 3.0)
d <- b - a:
sleep <- data.frame(a, b, d)</pre>
sleep
## a b d
## 1 0.7 1.9 1.2
## 2 -1.6 0.8 2.4
## 3 -0.2 1.1 1.3
## 4 -1.2 0.1 1.3
## 5 0.1 -0.1 -0.2
## 6 3.4 4.4 1.0
## 7 3.7 5.5 1.8
## 8 0.8 1.6 0.8
## 9 0.0 4.6 4.6
## 10 2.0 3.0 1.0
```

```
# plot of data
par(mfrow=c(2,1))
# Histogram overlaid with kernel density curve
hist(sleep$d, freq = FALSE, breaks = 20)
points(density(sleep$d), type = "1")
rug(sleep$d)
# boxplot
boxplot(sleep$d, horizontal=TRUE)
# QQ plot
par(mfrow=c(1,1))
qqPlot(sleep$d, las = 1, id.n = 4, id.cex = 1, lwd = 1,
      main="QQ Plot")
## 9 5 2 8
## 10 1 9 2
```

< □ > < @ > < 言 > < 言 > こ > うへで -1/-1

Histogram of sleep\$d





norm quantiles

```
# Normality tests
shapiro.test(sleep$d)
##
##
    Shapiro-Wilk normality test
##
## data: sleep$d
\#\# W = 0.83798, p-value = 0.04173
library(nortest)
ad.test(sleep$d)
##
##
    Anderson-Darling normality test
##
## data: sleep$d
## A = 0.77378, p-value = 0.02898
# lillie.test(sleep£d)
cvm.test(sleep$d)
##
##
    Cramer-von Mises normality test
##
## data: sleep$d
## W = 0.13817, p-value = 0.02769
```

୬୦୯ -1/-1

Summary of findings:

- The boxplot and normal scores plots suggest that the underlying distribution of differences for the paired sleep data is reasonably symmetric, but heavy tailed.
- The p-value for the SW test of normality is 0.042, and for the AD test is 0.029, both of which may call into question a normality assumption. Look further, SW test has a p-value of 0.042. This is not a strong rejection of the null hypothesis. Normality should still be an operational assumption.
- ► A non-parametric test comparing the sleep remedies (one that does not assume normality) is probably more appropriate here.

Intro Testing Normality Testing Equal Population Variances

Example: Androstenedione Levels

This is an independent two-sample problem, so you must look at normal scores plots for the two groups: males and females.

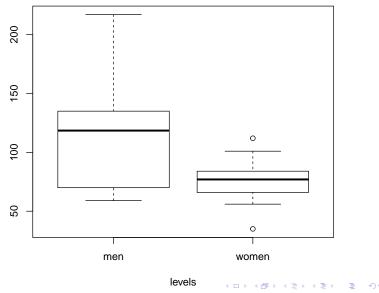
```
#### Example: Androstenedione Levels
# Data and numerical summaries
men <- c(217, 123, 80, 140, 115, 135, 59, 126, 70, 63,
           147, 122, 108, 70)
women <- c(84, 87, 77, 84, 73, 66, 70, 35, 77, 73,
            56, 112, 56, 84, 80, 101, 66, 84)
level <- c(men, women)</pre>
sex <- c(rep("men", length(men)), rep("women", length(women)))</pre>
andro <- data.frame(level, sex)</pre>
head(andro)
##
    level sex
## 1 217 men
## 2 123 men
## 3 80 men
## 4 140 men
## 5 115 men
```

6 135 men

boxplot using R base graphics

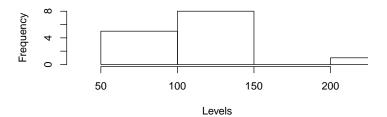
```
boxplot(level ~ sex, method = "stack", data = andro,
horizontal = FALSE,
main = "boxplot for Andro data", xlab = "levels")
```

boxplot for Andro data



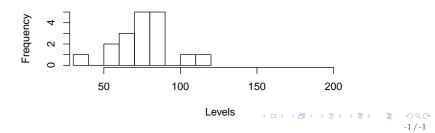
-1/-1

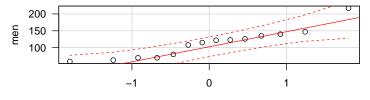
```
# common x-axis limits based on the range of the entire data set
par(mfrow=c(2,1))
hist(andro$level[(andro$sex == "men")],
    xlim = range(andro$level),
    main = "Levels, Men", xlab = "Levels")
hist(andro$level[(andro$sex == "women")],
    xlim = range(andro$level),
    main = "Levels, Women", xlab = "Levels")
```



Levels, Men

Levels, Women

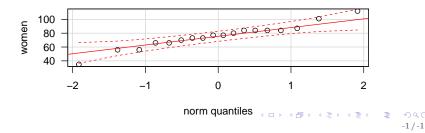




QQ Plot, Men

norm quantiles

QQ Plot, Women



The women's boxplot contains two mild outliers, which is unusual when sampling from a normal distribution.

—The tests are possibly not powerful enough to pick up this type of deviation from normality in such a small sample.

---In practice, this may not be a big concern. The two mild outliers probably have a small effect on inferences in the sense that non-parametric methods would probably lead to similar conclusions here.

- Histogram plots didn't show extreme skewness
- QQ plot look fine.

Tests: Men

```
shapiro.test(men)
##
##
    Shapiro-Wilk normality test
##
## data:
         men
\#\# W = 0.90595, p-value = 0.1376
library(nortest)
ad.test(men)
##
##
    Anderson-Darling normality test
##
## data:
          men
## A = 0.4718, p-value = 0.2058
cvm.test(men)
##
##
    Cramer-von Mises normality test
##
## data:
         men
\#\# W = 0.063063, p-value = 0.3221
```

୬୯୯ -1/-1

Women

```
shapiro.test(women)
##
##
    Shapiro-Wilk normality test
##
## data: women
\#\# W = 0.95975, p-value = 0.5969
library(nortest)
ad.test(women)
##
##
    Anderson-Darling normality test
##
## data:
          women
## A = 0.39468, p-value = 0.3364
cvm.test(women)
##
##
    Cramer-von Mises normality test
##
## data: women
\#\# W = 0.065242, p-value = 0.3057
```

୬୯୯ -1/-1

- Both the AD test p-value and the SW test p-value for testing normality exceeds 0.10 in each sample.
- Thus, given the sample sizes (14 for men, 18 for women), we have insufficient evidence (at α = 0.05) to reject normality in either population.
- Most statisticians use graphical methods (boxplot, normal scores plot) to assess normality, and do not carry out formal tests.

In the independent two sample *t*-test, we want to test

$$H_0: \sigma_1^2 = \sigma_2^2$$

 to decide between using the pooled-variance procedure or Satterthwaite's methods.

——suggest the pooled *t*-test and CI if H_0 is not rejected, and Satterthwaite's methods otherwise.

- number of well-known tests for equal population variances, of which Bartlett's test and Levene's test are probably the best known.
- Bartlett's test assumes the population distributions are normal —check normality prior to using Bartlett's test.
- Levene's test is more robust to departures from normality than Bartlett's test; it is in the car package.

Bartlett's test

▶ let n^{*} = n₁ + n₂ + · · · + n_k, where the n_is are the sample sizes from the k groups, and define

$$v = 1 + \frac{1}{3(k-1)} \left(\sum_{i=1}^{k} \frac{1}{n_i - 1} - \frac{1}{n^* - k} \right)$$

▶ Bartlett's statistic for testing $H_0: \sigma_1^2 = \cdots = \sigma_k^2$ is given by

$$B_{obs} = rac{2.303}{v} \left\{ (n-k) \log(s_{ ext{pooled}}^2) - \sum_{i=1}^k (n_i - 1) \log(s_i^2) \right\},$$

where s_{pooled}^2 is the pooled estimator of variance and s_i^2 is the estimated variance based on the *i*th sample.

 Large values of B_{obs} suggest that the population variances are unequal.

—For a size α test, we reject H_0 if $B_{obs} \ge \chi^2_{k-1,crit}$, where $\chi^2_{k-1,crit}$ is the upper- α percentile for the χ^2_{k-1} (chi-squared) probability distribution with k-1 degrees of freedom.

—A p-value for the test is given by the area under the chi-squared curve to the right of B_{obs} .

Example: Androstenedione Levels continued The sample standard deviations and samples sizes are:

$$s_1=42.8, ext{ and } n_1=14$$
 for men

 $s_2 = 17.2$, and $n_2 = 18$ for women

- The sample standard deviations appear to be very different
- Expect the test of equal population variances is highly significant.
- The output below confirms this: the p-values for Bartlett's test, Levene's Test are both much smaller than 0.05. An implication is that the standard pooled-CI and test on the population means is inappropriate.

```
#### Testing Equal Population Variances
# numerical summaries
c(mean(men), mean(women), sd(men), sd(women))
## [1] 112,50000 75,83333 42,75467 17,23625
c(IQR(men), IQR(women), length(men), length(women))
## [1] 60.25 17.00 14.00 18.00
## Test equal variance
# assumes populations are normal
bartlett.test(level ~ sex, data = andro)
##
##
   Bartlett test of homogeneity of variances
##
## data: level by sex
## Bartlett's K-squared = 11.199, df = 1, p-value = 0.0008183
```

< □ > < @ > < 言 > < 言 > こ > うへで -1/-1

```
# does not assume normality, requires car package
library(car)
leveneTest(level ~ sex, data = andro)
## Levene's Test for Homogeneity of Variance (center = median)
## Df F value Pr(>F)
## group 1 7.2015 0.01174 *
## 30
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Summary:

- Always Plot, Plot, Plot first.
- Tests for normality may have low power in small to moderate sized samples. Visual assessment of normality is often more valuable than a formal test.
- Tests for equal variance assumption have the same problem.
 We will discuss using residuals to assess the equal variance assumption later.