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Stat 427/527: Advanced Data Analysis I

Chapter 4: Checking Assumptions

Instructor: Yan Lu
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I Statistical methods make assumptions about the data
collection process and the shape of the population distribution.

I If you reject the null hypothesis in a test, then a reasonable
conclusion is that the null hypothesis is false, provided all the
distributional assumptions made by the test are satisfied.
—-If the assumptions are not satisfied then that alone might
be the cause of rejecting H0.
—-Additionally, if you fail to reject H0, that could be caused
solely by failure to satisfy assumptions also.

I Hence, you should always check assumptions to the best of
your abilities.

Three basic assumptions

I Data are a random sample.

I The population frequency curve is normal.

I For the pooled variance two-sample test the population
variances are also required to be equal.
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Testing Normality
An informal test of normality can be based on a normal scores
plot, sometimes called a rankit plot or a normal probability
plot or a normal QQ plot (QQ = quantile-quantile).

I plot the quantiles of the data against the quantiles of the
normal distribution, or expected normal order statistics (in
a standard normal distribution) for a sample with the given
number of observations.

I The normality assumption is plausible if the plot is fairly linear.
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I Start with simulated data from a normal distribution.

#### sample from normal distribution

x1 <- rnorm(150, mean = 100, sd = 15)

par(mfrow=c(2,1))

# Histogram overlaid with kernel density curve

hist(x1, freq = FALSE, breaks = 20)

points(density(x1), type = "l")

rug(x1)
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# boxplot

boxplot(x1)
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#### QQ plots

# R base graphics

par(mfrow=c(1,1))

# plots the data vs their normal scores

qqnorm(x1)

# plots the reference line

qqline(x1)
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I add confidence intervals (point-wise)

par(mfrow=c(1,1))

# Normality of Residuals

#install.packages("car")

library(car)

# qq plot for studentized resid

# las = 1 : turns labels on y-axis to

# read horizontally

# id.n = n : labels n most extreme observations,

# and outputs to console

# id.cex = 1 : is the size of those labels

# lwd = 1 : line width

qqPlot(x1, las = 1, id.n = 6, id.cex = 1, lwd = 1,

main="QQ Plot")
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## 135 137 77 128 92 88

## 150 1 149 2 3 148

The above are 6 most extreme observations, with the
corresponding values

I x-axis is labelled “norm quantiles”.

I This is the same graph as before, but with the normal scores
identified with the percentiles to which they correspond.

I Only see a couple of data values outside the limits (in the
tails, where it usually happens). Expect around 5% outside
the limits, so there is no indication of non-normality here.

I We did sample from a normal population.
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Light-tailed symmetric (Uniform)

#### Light-tailed symmetric (Uniform)

# sample from uniform distribution

x2 <- runif(150, min = 50, max = 150)

par(mfrow=c(2,1))

# Histogram overlaid with kernel density curve

hist(x2, freq = FALSE, breaks = 20)

points(density(x2), type = "l")

rug(x2)

# boxplot

boxplot(x2)

par(mfrow=c(1,1))

qqPlot(x2, las = 1, id.n = 0, id.cex = 1, lwd = 1,

main="QQ Plot")
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Histogram of x2
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Heavy-tailed (fairly) symmetric (Normal-squared)

#### Heavy-tailed (fairly) symmetric (Normal-squared)

# sample from normal distribution

x3.temp <- rnorm(150, mean = 0, sd = 1)

x3 <- sign(x3.temp)*x3.temp^2 * 15 + 100

par(mfrow=c(2,1))

# Histogram overlaid with kernel density curve

hist(x3, freq = FALSE, breaks = 20)

points(density(x3), type = "l")

rug(x3)

# boxplot

boxplot(x3, horizontal=TRUE)

par(mfrow=c(1,1))

qqPlot(x3, las = 1, id.n = 0, id.cex = 1, lwd = 1,

main="QQ Plot")
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Histogram of x3
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Right-skewed (Exponential)

#### Right-skewed (Exponential)

# sample from exponential distribution

x4 <- rexp(150, rate = 1)

par(mfrow=c(2,1))

# Histogram overlaid with kernel density curve

hist(x4, freq = FALSE, breaks = 20)

points(density(x4), type = "l")

rug(x4)

# boxplot

boxplot(x4, horizontal=TRUE)

par(mfrow=c(1,1))

qqPlot(x4, las = 1, id.n = 0, id.cex = 1, lwd = 1,

main="QQ Plot")
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Histogram of x4
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Left-skewed (Exponential, reversed)

#### Left-skewed (Exponential, reversed)

# sample from exponential distribution

x5 <- 15 - rexp(150, rate = 0.5)

par(mfrow=c(2,1))

# Histogram overlaid with kernel density curve

hist(x5, freq = FALSE, breaks = 20)

points(density(x5), type = "l")

rug(x5)

# boxplot

boxplot(x5, horizontal=TRUE)

par(mfrow=c(1,1))

qqPlot(x5, las = 1, id.n = 0, id.cex = 1, lwd = 1,

main="QQ Plot")
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Histogram of x5
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Comments
Notice how striking is the lack of linearity in the QQ plot for
all the non-normal distributions
—-The boxplot of the symmetric light-tailed distribution looks
fairly good, however the QQ plot show the deviations.
—-The QQ plot is a sensitive measure of normality.
Let us summarize the patterns we see regarding tails in the
plots:

Tail
Tail Weight Left Right

Light Left side of plot Right side of plot
points left points right

Heavy Left side of plot Right side of plot
points down points up
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Figure 1 : Normal probability plots when error term distribution is
not normal
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Formal Tests of Normality

I A formal test of normality is based on the correlation
between the data and the normal scores.

I The correlation is a measure of the strength of a linear
relationship,
—-with the sign of the correlation indicating the direction of
the relationship (that is, + for increasing relationship, and −
for decreasing).

I The correlation varies from −1 to +1.
—–In a normal scores plot, you are looking for a correlation
close to +1.

I Normality is rejected if the correlation is too small.
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R has several tests of normality.

I Shapiro-Wilk test shapiro.test() is a base function.

I The R package nortest has some others:
—-the Anderson-Darling test ad.test() is useful, related to
the Kolmogorov-Smirnov
—-the Cramer-von Mises test cvm.test(),

Extreme outliers and skewness have the biggest effects on standard
methods based on normality.

I The Shapiro-Wilk (SW) test is better at picking up these
problems than the Kolmogorov-Smirnov (KS) test.

I Tests for normality may have low power in small to moderate
sized samples. Visual assessment of normality is often more
valuable than a formal test.
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Normal distribution

shapiro.test(x1)

##

## Shapiro-Wilk normality test

##

## data: x1

## W = 0.99316, p-value = 0.6978

library(nortest)

ad.test(x1)

##

## Anderson-Darling normality test

##

## data: x1

## A = 0.41369, p-value = 0.3328

cvm.test(x1)

##

## Cramer-von Mises normality test

##

## data: x1

## W = 0.080059, p-value = 0.2052
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Light-tailed symmetric

shapiro.test(x2)

##

## Shapiro-Wilk normality test

##

## data: x2

## W = 0.93579, p-value = 2.566e-06

library(nortest)

ad.test(x2)

##

## Anderson-Darling normality test

##

## data: x2

## A = 2.724, p-value = 6.826e-07

cvm.test(x2)

##

## Cramer-von Mises normality test

##

## data: x2

## W = 0.40862, p-value = 2.101e-05
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Heavy-tailed (fairly) symmetric

shapiro.test(x3)

##

## Shapiro-Wilk normality test

##

## data: x3

## W = 0.92729, p-value = 6.459e-07

library(nortest)

ad.test(x3)

##

## Anderson-Darling normality test

##

## data: x3

## A = 4.7926, p-value = 6.396e-12

cvm.test(x3)

##

## Cramer-von Mises normality test

##

## data: x3

## W = 0.97764, p-value = 1.809e-09
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Right-skewed

shapiro.test(x4)

##

## Shapiro-Wilk normality test

##

## data: x4

## W = 0.89513, p-value = 7.087e-09

library(nortest)

ad.test(x4)

##

## Anderson-Darling normality test

##

## data: x4

## A = 3.1839, p-value = 5.132e-08

cvm.test(x4)

##

## Cramer-von Mises normality test

##

## data: x4

## W = 0.44715, p-value = 8.559e-06
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Left-skewed
shapiro.test(x5)

##

## Shapiro-Wilk normality test

##

## data: x5

## W = 0.8547, p-value = 7.248e-11

library(nortest)

ad.test(x5)

##

## Anderson-Darling normality test

##

## data: x5

## A = 6.5439, p-value = 4.016e-16

cvm.test(x5)

## Warning in cvm.test(x5): p-value is smaller than 7.37e-10,

cannot be computed more accurately

##

## Cramer-von Mises normality test

##

## data: x5

## W = 1.1491, p-value = 7.37e-10
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Example: Paired Differences on Sleep Remedies
The following data give the amount of sleep

I gained in hours from two sleep remedies, A and B,

I 10 individuals who have trouble sleeping an adequate amount
were observed

I Negative values imply sleep loss.

I In 9 of the 10 individuals, the sleep gain on B exceeded that
on A.
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#### Example: Paired Differences on Sleep Remedies

# Data and numerical summaries

a <- c( 0.7, -1.6, -0.2, -1.2, 0.1, 3.4, 3.7,

0.8, 0.0, 2.0)

b <- c( 1.9, 0.8, 1.1, 0.1, -0.1, 4.4, 5.5,

1.6, 4.6, 3.0)

d <- b - a;

sleep <- data.frame(a, b, d)

sleep

## a b d

## 1 0.7 1.9 1.2

## 2 -1.6 0.8 2.4

## 3 -0.2 1.1 1.3

## 4 -1.2 0.1 1.3

## 5 0.1 -0.1 -0.2

## 6 3.4 4.4 1.0

## 7 3.7 5.5 1.8

## 8 0.8 1.6 0.8

## 9 0.0 4.6 4.6

## 10 2.0 3.0 1.0
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# plot of data

par(mfrow=c(2,1))

# Histogram overlaid with kernel density curve

hist(sleep$d, freq = FALSE, breaks = 20)

points(density(sleep$d), type = "l")

rug(sleep$d)

# boxplot

boxplot(sleep$d, horizontal=TRUE)

# QQ plot

par(mfrow=c(1,1))

qqPlot(sleep$d, las = 1, id.n = 4, id.cex = 1, lwd = 1,

main="QQ Plot")

## 9 5 2 8

## 10 1 9 2
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Histogram of sleep$d
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# Normality tests

shapiro.test(sleep$d)

##

## Shapiro-Wilk normality test

##

## data: sleep$d

## W = 0.83798, p-value = 0.04173

library(nortest)

ad.test(sleep$d)

##

## Anderson-Darling normality test

##

## data: sleep$d

## A = 0.77378, p-value = 0.02898

# lillie.test(sleep£d)

cvm.test(sleep$d)

##

## Cramer-von Mises normality test

##

## data: sleep$d

## W = 0.13817, p-value = 0.02769
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Summary of findings:

I The boxplot and normal scores plots suggest that the
underlying distribution of differences for the paired sleep data
is reasonably symmetric, but heavy tailed.

I The p-value for the SW test of normality is 0.042, and for the
AD test is 0.029, both of which may call into question a
normality assumption. Look further, SW test has a p-value of
0.042. This is not a strong rejection of the null hypothesis.
Normality should still be an operational assumption.

I A non-parametric test comparing the sleep remedies (one that
does not assume normality) is probably more appropriate here.
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Example: Androstenedione Levels
This is an independent two-sample problem, so you must look
at normal scores plots for the two groups: males and females.

#### Example: Androstenedione Levels

# Data and numerical summaries

men <- c(217, 123, 80, 140, 115, 135, 59, 126, 70, 63,

147, 122, 108, 70)

women <- c( 84, 87, 77, 84, 73, 66, 70, 35, 77, 73,

56, 112, 56, 84, 80, 101, 66, 84)

level <- c(men, women)

sex <- c(rep("men", length(men)), rep("women", length(women)))

andro <- data.frame(level, sex)

head(andro)

## level sex

## 1 217 men

## 2 123 men

## 3 80 men

## 4 140 men

## 5 115 men

## 6 135 men
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# boxplot using R base graphics

boxplot(level ~ sex, method = "stack", data = andro,

horizontal = FALSE,

main = "boxplot for Andro data", xlab = "levels")
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# common x-axis limits based on the range of the entire data set

par(mfrow=c(2,1))

hist(andro$level[(andro$sex == "men")],

xlim = range(andro$level),

main = "Levels, Men", xlab = "Levels")

hist(andro$level[(andro$sex == "women")],

xlim = range(andro$level),

main = "Levels, Women", xlab = "Levels")
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# QQ plot

par(mfrow=c(2,1))

qqPlot(men, las = 1, id.n = 0, id.cex = 1, lwd = 1,

main="QQ Plot, Men")

qqPlot(women, las = 1, id.n = 0, id.cex = 1, lwd = 1,

main="QQ Plot, Women")
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I The women’s boxplot contains two mild outliers, which is
unusual when sampling from a normal distribution.
—–The tests are possibly not powerful enough to pick up this
type of deviation from normality in such a small sample.
—-In practice, this may not be a big concern. The two mild
outliers probably have a small effect on inferences in the sense
that non-parametric methods would probably lead to similar
conclusions here.

I Histogram plots didn’t show extreme skewness

I QQ plot look fine.
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Tests: Men

shapiro.test(men)

##

## Shapiro-Wilk normality test

##

## data: men

## W = 0.90595, p-value = 0.1376

library(nortest)

ad.test(men)

##

## Anderson-Darling normality test

##

## data: men

## A = 0.4718, p-value = 0.2058

cvm.test(men)

##

## Cramer-von Mises normality test

##

## data: men

## W = 0.063063, p-value = 0.3221
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Women

shapiro.test(women)

##

## Shapiro-Wilk normality test

##

## data: women

## W = 0.95975, p-value = 0.5969

library(nortest)

ad.test(women)

##

## Anderson-Darling normality test

##

## data: women

## A = 0.39468, p-value = 0.3364

cvm.test(women)

##

## Cramer-von Mises normality test

##

## data: women

## W = 0.065242, p-value = 0.3057
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I Both the AD test p-value and the SW test p-value for testing
normality exceeds 0.10 in each sample.

I Thus, given the sample sizes (14 for men, 18 for women), we
have insufficient evidence (at α = 0.05) to reject normality in
either population.

I Most statisticians use graphical methods (boxplot, normal
scores plot) to assess normality, and do not carry out formal
tests.
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In the independent two sample t-test, we want to test

H0 : σ21 = σ22

I to decide between using the pooled-variance procedure or
Satterthwaite’s methods.
——suggest the pooled t-test and CI if H0 is not rejected,
and Satterthwaite’s methods otherwise.

I number of well-known tests for equal population variances, of
which Bartlett’s test and Levene’s test are probably the best
known.

I Bartlett’s test assumes the population distributions are normal
—–check normality prior to using Bartlett’s test.

I Levene’s test is more robust to departures from normality than
Bartlett’s test; it is in the car package.
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Bartlett’s test
I let n∗ = n1 + n2 + · · · + nk , where the ni s are the sample sizes from

the k groups, and define

v = 1 +
1

3(k − 1)

(
k∑

i=1

1

ni − 1
− 1

n∗ − k

)
.

I Bartlett’s statistic for testing H0 : σ2
1 = · · · = σ2

k is given by

Bobs =
2.303

v

{
(n − k) log(s2pooled) −

k∑
i=1

(ni − 1) log(s2i )

}
,

where s2pooled is the pooled estimator of variance and s2i is the

estimated variance based on the i th sample.
I Large values of Bobs suggest that the population variances are

unequal.
—–For a size α test, we reject H0 if Bobs ≥ χ2

k−1,crit, where

χ2
k−1,crit is the upper-α percentile for the χ2

k−1 (chi-squared)
probability distribution with k − 1 degrees of freedom.

—–A p-value for the test is given by the area under the chi-squared

curve to the right of Bobs.
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Example: Androstenedione Levels continued
The sample standard deviations and samples sizes are:

s1 = 42.8, and n1 = 14 for men

s2 = 17.2, and n2 = 18 for women

I The sample standard deviations appear to be very different

I Expect the test of equal population variances is highly
significant.

I The output below confirms this: the p-values for Bartlett’s
test, Levene’s Test are both much smaller than 0.05. An
implication is that the standard pooled-CI and test on the
population means is inappropriate.
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#### Testing Equal Population Variances

# numerical summaries

c(mean(men), mean(women), sd(men), sd(women))

## [1] 112.50000 75.83333 42.75467 17.23625

c(IQR(men), IQR(women), length(men), length(women))

## [1] 60.25 17.00 14.00 18.00

## Test equal variance

# assumes populations are normal

bartlett.test(level ~ sex, data = andro)

##

## Bartlett test of homogeneity of variances

##

## data: level by sex

## Bartlett's K-squared = 11.199, df = 1, p-value = 0.0008183
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# does not assume normality, requires car package

library(car)

leveneTest(level ~ sex, data = andro)

## Levene's Test for Homogeneity of Variance (center = median)

## Df F value Pr(>F)

## group 1 7.2015 0.01174 *

## 30

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Summary:

I Always Plot, Plot, Plot first.

I Tests for normality may have low power in small to moderate
sized samples. Visual assessment of normality is often more
valuable than a formal test.

I Tests for equal variance assumption have the same problem.
We will discuss using residuals to assess the equal variance
assumption later.
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