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Abstract

Let Ag denote the rotation algebra, generated by unitaries U and V which
satisfy UV =¢2™M8VU | 0<60 < 1. For irrational values of 6 , Pimsner and
Voiculescu have shown that there is an embedding of Ag into an AF algebra that induces
an isomorphism of the K groups. It remains unsettled whether such an embedding can
be found for rational 6 . In this paper we partially solve the problem by constructing a
unital embedding of Ay =C(T 2) into an AF algebra for which the induced map on K, is
injective. Using strong Morita equivalence, an analogous embedding can be found of the
other rational rotation algebras.

The existence of these embeddings shows that cohomology theory cannot be
extended to C*-algebras in a way that satisfies the axioms of stability and continuity while
still admitting a well behaved Chern character. It also follows that Ag is not
semiprojective [EK1] for any value of @ . We show, however, that the quotient
C(S1vS!) is semiprojective. These examples suggest that semiprojectivity may be a good
characterization of one-dimensionality for C*-algebras.

The embedding of C(T2) is determined by two commuting unitaries in an AF
algebra. By approximating these by unitaries that lie in finite dimensional subalgebras, one
obtains two sequences of unitary matrices that commute asymptotically but which cannot
be approximated by sequences of commuting unitaries. The first example of such a pair of
sequences was given by Voiculescu. The calculations that are needed for calculating the
K-theory of the AF embedding of C(T2) provide a new proof of Voiculescu's example,
that illustrates the exact role played by the second-cohomology of the torus.
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Introduction

In the study of C*-algebras, it is common to look to the commutative case for
inspiration. Since a commutative C*-algebra is isomorphic to Cy(X) for a locally
compact Hausdorff space, it is very tempting to try to extend the methods of algebraic
topology to work for noncommutative C*-algebras. This extension process has worked
well enough to deserve a name, and is often called noncommutative topology. Among the
triumphs in this field are K-theory for C*-algebras and shape theory for C*-algebras. The
K-groups Ky(A) and K,(A) have a very natural definition [B4, T1] for any C*-algebra,
and they agree exactly with topological K-theory in that K;(Cy(X)) = KiX) for i=1,2.
Shape theory is not nearly so well developed, but some interesting results have been
obtained [B1, EK1, EK2].

There must, however, be some limits on how far the methods of algebraic
topology can be generalized to work for C*-algebras. There have not been any successful
definitions of a cohomology for C*-algebras, extending, say, singular cohomology.
(Connes' cyclic cohomology works well only for suitable proper dense subalgebras of
C*-algebras.) It may be that no definitions are possible unless we limit our expectations
on what properties of topological cohomology carry over to C*-algebras.

K-theory is a nonstandard cohomology that contains much less information than
the standard cohomology theories. Let H®V and HO4d denote the direct sums of the even
and odd cohomology groups respectively. The Chern character provides a natural
homomorphism ch : KO(X) - H®V(X, Z) which is an isomorphism up to torsion. A
good cohomology theory for C*-algebras should include a Chern character, but as
Blackadar pointed out to me, this may be too much to hope for, given the many maps that
can exist [B3] from commutative C*-algebras into approximately finite-dimensional

C*algebras (AF algebras).



AF algebras are generally thought of as being zero-dimensional. By definition
[B2], an AF algebra A has an increasing sequence A, of finite-dimensional subalgebras
sothat A = m; . This is generally denoted A =lim A, . A commutative AF algebra is
isomorphic to C(X) where X is a zero-dimensional space. As a consequence, H,(A) =
0 for n >0 for a commutative AF algebra. As we shall now see, under reasonable
assumptions, H(A), n>0, will be zero for any AF algebra.

In the next propositions, the term cohomology theory will be used loosely to mean
any abelian group valued functor defined on C*-algebras. If H,,, is such a collection of
functors, then as usual, H, and Hg, shall denote (‘Dnzo H, and @ n>0 Hon

respectively.

0.1 Proposition: Assume that H, is a cohomology theory for C*-algebras

that satisfies the following axioms:

1) Stability: Hy(A®M,) = Hy(A) where M, denotes the algebra of n by n
matrices

2) Continuity: Hy(lim A) =lim Hy(A)

3) H«(A®B) = Hy(A)®H,(B)

4) H,(C) = H*(pt) = Z in dimension zero, 0 in higher dimensions

Then for any AF algebra A, H,(A)=0 for n>0.

Proof: Since any finite-dimensional C*-algebra is a direct sum of matrix
algebras, axioms 1,3 and 4 imply that, for n greater than zero, H,, is zero on any

finite-dimensional algebra. By axiom 2 this is also true for any AF algebra.
Q.ED.




In chapter II we show that there exists an AF algebra A and a homomorphism
¢: C(T2) > A such that the induced map O : KO(C(TZ)) — K(A) is an injection. The
following proposition, mentioned to me by Blackadar, shows that, given this example, the

four axioms above are incompatible with a well-behaved Chern character.

0.2 Proposition: Suppose H, is a cohomology theory for C*-algebras, and
suppose that there is a natural transformation ch : Ky — H,, which is an isomorphism up
to torsion. If ¢ : C(T2) — A is a homomorphism that induces an injection on K , then

Hy(A) contains an infinite cylic element.

Proof: The groups KO(T2)=172, HY(T2)=Z and HX(T?)=Z are all
torsion-free so ch : K%(T2)— HOT2)® HX(T2) is an isomorphism. Since ch is natural,

the following diagram is commutative.

P
KO(1?) - Ko(A)
chlT lch
PO, ,
HY(T?)® HX(T?) - HyA)®H,A)® ...

On the top row, ¢, maps injectively into the torsion-free part of Ky(A). Since
ch is injective on torsion-free elements, the composition ch @, ch™! = ¢, D¢, is
injective. In particular, @y : H%(T2)=Z — H2(A) is an injection which proves the

theorem. Q.E.D.



What does this mean for cohomology theory for C*-algebras? It may be that there
are cohomologies which satisfy axioms 1 to 4 , but for which there is either no Chern
character or for which the associated Chern character is only an isomorphism (up to
torsion) in the commutative case. Notice that pr‘oposition 0.2 says nothing about the
Chern character of Connes [C1, C2], which takes its values in the cyclic cohomology.
Blackadar has suggested that K may still break up into the various even-dimensional
parts, but in a more subtle way than a direct sum, such as a filtration. It may be the case
that we can describe what it means for a € Ky(A) to be a two-dimensional eiement, but
fx(a) may be zero-dimensional for some homomorphism f. Another interpretation of
these propositions is that one of the axioms 1 through 4 should be discarded so that some
AF algebras can have nonzero second-cohomology. Stability is certainly suspect since it is
motivated only by the stability of the K-theory of C*-algebras, there being no counterpart
for stability in topological cohomology. See [S3] for a study of axiomatic cohomology for
C*-algebras in which stability is not assumed. In any case, it is fair to say we need to
rethink the notion that AF algebras should be thought of as zero-dimensional.

The best place to find motivation for the existence of an embedding ¢ from
C(T?) into an AF algebra which is injective on K, is in the work of Pimsner and
Voiculescu, since they have done the most work on embeddings into AF algebras. By
looking at the Fourier transform, it is clear that C(T2) is generated by two commuting
unitaries, e2MX and 2 | In fact, C(T?) is the universal C*-algebra generated by two
commuting unitaries. This is a special case of the rotation algebras Ag . For any real
number O , Ag is defined as the universal C*-algebra generated by two unitaries U and
V subject to the commutation relation UV = e2%0vy . We call Ag arational or an
irrational rotation algebra depending on whether or not 0 is rational. The first important

AF embeddings were Pimsner and Voiculescu's embeddings of the irrational rotation



algebras into an AF algebra. These embeddings induced injections on K. This was
important since, combined with the work of Rieffel [R1], it provided the first calculation of
the image of the trace on Ky(Ag) . Since C(T 2y is the zero-rotation algebra, it seems
likely that a similar construction will work in this case.

Pimsner [P1] went on to find a method for embedding a wide class of
transformation group C*-algebras C*(X, Z, o) into AF algebras. Here o is an action
of Z on a topological space X . When the space is taken to be S! and o is rotation
though an angle of 218, C*(X,Z, ) is isomorphic to the rotation algebra Ag. For 6
irrational, Pimsner's embedding is more or less the same as the original embedding of
Pimsner and Voiculescu. Corollary I1.5.4, which depends on theorem I1.5.2, shows
that, for 6 = 0, Pimsner's embedding also will induce an injection on the K, groups.

Any map from C(T?) to an AF algebra A is defined by a pair of commuting
unitaries U and V in A. Any unitary in an AF algebra will be approximated by unitaries
in the finite subalgebras. Commuting unitaries in an AF algebra are therefore defined by
convergent sequences U, and V, of unitary matrices (of increasing dimension) that
commute asymptotically in the sense that || U,V - V Uy [ = 0. In[V1] Voiculescu has
exhibited two (nonconvergent) sequences of unitaries which commute asymptotically, but
which cannot be approximated by commuting unitaries. He mentions that his example
depends on the nonzero second-cohomology of the torus. This will be made precise in
chapter I where a new proof of this result is given using K-theory.

The fact that there exist homomorphisms from C(T 2) to AF algebras which are
injective on K, is of interest independent of its implications for cohomology of
C*-algebras. For instance Spielberg [S2, section 4.5] discusses such maps in relation to
the AF embeddings of suspended solenoids. It also has implications regarding the shape
theory of C*-algebras. Shape theory for compact spaces, as developed in [MS1], is the

study of the ways that a space can be written as a limit of ANR's . The reason ANR's are



choosen as the basic building block is that they have the useful homotopy property that any
map to an ANR from a limit of spaces is homotopic to a map from one of those spaces
[MS1, lemma 3]. By abstracting this homotopy property, Effros and Kaminker have

defined what it means for a C*-algebra to be a "noncommutative ANR."

0.3 Definition: A C*-algebra A is semiprojective if for every system of

C*-algebras

?1 $2 @3
By 2By 5By ¢y, injective; unital

every unital homomorphism y : A — lim B, is homotopic to a unital homomorphism into
some B, . (It is actually a theorem that this agrees with the usual definition of

semiprojectivy. See section ITI.1.)

A shape system for a C*-algebra B is a system of C*-algebras B, — B,
such that B =lim B, . Since finite-dimensional algebras are semiprojective [EK1], a
Bratteli diagram [B2] is an example of a shape system.

A natural question to ask is whether or not C(X) is semiprojective for X an
ANR. While C(X) will have the required homotopy property for limits of commutative
C*-algebras, it is too much to hope that it will have the required property for general B, .
It is possible that C(X) will be semiprojective only for spaces that have the homotopy
type of a one-dimensional space. We shall see that the K-theory calculations in chapter II
imply that C(T2), C(S2) and the rotation algebras are not semiprojective. In chapter III
it is proved that C(SlvS!) is semiprojective.

The first chapter iﬁvestigates the K-theory of the torus from a C*-algebra point of



view. An explicit formula for a nontrivial projection in M2(C(T2)) is obtained, leading to
the definition of a projection e(U,V) which is defined for any pair of unitaries U and V
which commute. This formula is extended to pairs of unitaries with small, but nonzero,
commutator for which it defines matrices that are approximately projections. This
extended formula is then used to give a K-theoretic proof of Voiculescu's example.

The second chapter, which relies heavily on the results in the first, defines the
embedding ¢ of C(T2) into an AF algebra and calculates its K-theory. The construction
is basically just an application of the results in [P1], but since this example illuminates
Pimsner's techniques while avoiding some technicalities, the embedding is constructed
directly in proposition I1.4.1. It should be possible to read the proof of proposition 11.4.1
without prior knowlege of Pimsner's work.

The main results in the third chapter are that C(S1vS!) is semiprojective, while
the rotation algebras are not. The proof that C(S1vS!) is semiprojective is logically
independent of the previous chapters, while the proof that the rotation algebras are

semiprojective depends on theorem I1.5.2.



Chapter I: A K-theoretic obstruction to commuting

approximants for asymptotically commuting unitary matrices

§1 Introduction: Voiculescu [V1] has shown by example that the following

question can sometimes have a negative answer: Given unitaries U, , V, € U(m,,) such

that lim || [Uy, V411l = 0, do there exist unitaries Up', V'€ U(my) so that
n—o
[Up, Vp1=0 and lim (|| Uy - U I+ Vp-Va'II)=07? This question can be
n—oeo

translated into a lifting problem for a certain homomorphism from C(T2). Voiculescu

remarks that his counterexample seems to depend on the nonzero second-cohomology of

the space T2, and so is unlikely to have any bearing on the (unsolved) corresponding

question for bounded sequences of selfadjoint matrices. This chapter should make the role

of the second-cohomology in Voiculescu's example explicit..

The matrices in Voiculescu's example are S, and €, where

(0 1) [ ® )

10 w?

10 w3
S, = . Q, = . o = n'h root of unity.

\ 10 L o' )

Voiculescu gives a proof of the following result that is based on the non-quasidiagonality

of the unilateral shift.

1.1 Theorem: Let S, and €, be the matrices above. Then lim || [ Sy, 2, 11l

= 0, but there do not exist unitaries U, and Vo such that U,V, = V,U, and



lim|| S, - Uy ll = lim || Q- V|l = 0.

The proof of theorem 1.1 given in section 4 follows a different course. While the
second-cohomology of the torus is not explicitly mentioned in the proof, it is always in the
background as explained below.

Let m(n) be any sequence of integers. Voiculescu considers the C*-algebra
A= {(Ty} 1Ty € My »5up [l Tyll <=}

and the ideal ] which consists of sequences (T,) such that lim || T, |=0.
Asymptotically commuting unitaries define commuting unitaries in the quotient A/} , and
so define a *-homomorphism of C(T2) into A/} . The approximation question is
equivalent to asking whether every *-homomorphism C(T2) - A/] can be lifted to
A . Lemma 4.1 below will show that any v : C(T2) —» A induces a map
Yy o KO(C(T2)) —> K(2) whose kernel contains the second-cohomology of T2 , where
KO(C(T2)) is identified with the even cohomology of the torus via the Chern character.
Thus one obstruction to lifting ¢ is that it must also contain the second-cohomology in its
kernel. Stated more concretely, ¢ cannot be lifted unless @4(1) and @4(e) are
equivalent projections, where e is the projection to be defined in section two.

Now let ¢ : C(T2) - A/] denote the *-homomorphism corresponding to S,
and Q, . Using the six-term exact sequence for K-theory, it quickly follows that
K((A/}) is isomorphic to the group of all sequences of integers where two sequences are
identified if they agree except on a finite portion. The content of theorem 4.2 is that ¢,.(e)
corresponds to the equivalence class of the sequence (n - 1) while clearly @4 (1)
corresponds to the equivalence class of the sequence (n) . These are not equivalent, and

so ¢ cannot be lifted.
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§2 The K-theory of the torus. The complex vector bundles over the torus
T2 are classified up to isomorphism by their images in KO(TZ) , which is isomorphic to
Z2 . The first integer corresponds to the dimension of the fibers and the second integer is
the first Chern class. This section will describe how to find a projection in MZ(C(TZ)) of
a particulary simple form which corresponds to the bundle of dimension one with first
Chern class equal to one.

Following along the lines of [R1], we take a guess that the desired projection can
be taken to be of the form

f g+hU
hU*+g 1-f
where U = 2™y and f(x) , g(x) and h(x) are nonnegative functions on S1=R/Z
(i.e., are functions on the real line of period one). Setting e2 equal to e imposes the
condition
f= f2+ghU+g2+h2+ghU*,

or equivalently,

gh=0

and gZ+h2=f-f2

One way to satisfy these equations is to choose any f for which



1) 0sf<1
and 2) f(0)=1, f(1/2)=0 and f(1)=1

and then define g and h by

3) g= X[o,l/z](f' f2)112
4) h=xpp,y(f - A2

where )y denotes the characteristic function on the set X . Furthermore, we assume that

f, g and h are smooth functions.

o

AN AN

As defined above, e will have trace one and so represents a bundle with

one-dimensional fibers. To calculate the first chern class c;(e) we use the formula [see

C1]

c1(€) = T(e(d;(€)d,(€) - dy(e)d;(€))) / 2mi

11
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where 8; and &, are the component-wise extensions to M2(C°°(T2)) of differentiation
by x and y respectively. The symbol T denotes the trace on C(T2) corresponding to

Lebesgue measure, extended to matrices in the usual way.

2.1 Proposition: For any choice of smooth functions f , g and h satisfying

conditions 1) to 4), the first chern class c,(e) is equalto 1.

Proof:

f g'+hU 0 U
3,(e)= d,(e)2ni = h

hU*+g -f -u* 0
Since g and h have disjoint supports, gh=gh =gh'=0 and so

h-gU* U ) (b fU )
3,(e)d,(e)2ri=h =h
fu* h+gU ) \ fU* b
h+gU -fU ) (b -fU)

8,(€)8,(e)/2mi = h =h
-fU*  -h'-gUY) \- fU* -h'

Therefore, e(3;(€)3,(¢) - 8,(€)d;(€)) / 2mi =

f g +hU -h' fU fh h2U -h'  fU
2h =2

hU*+g 1 fU* h' h2U* h-fh fU* n'
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- thh' + h2f f£hU + h2h'U
=2
-h2h'U*+ (h- AU - fhh' + h2f + hh'
Applying the trace, we get
c4(e) = 27( - fhh' + h2f) + 2t( - fhh' + h2f' + hh')
= | 2hh' - 4fhh' + 4h2f
which, by the next lemma, is equal to 1. Q.E.D.

It is interesting to note that these integrals will appear again in section four when

computing the dimension of certain finite-rank projections.
2.2 Lemma: For functions f, g and h which satisfy conditions 1) to 4):

@ Joh' =0
(i) Jfhh'=-1/12
(i) Jh2f = 1/6.

Proof: Since h is periodic, 2/hh' = J(h2)' = 0. By integration by parts, we
find 2ffhh’ = [f(h2) = - [f'(h?) so (ii) follows from (iii). On the interval [0, 1/2], h

is equal to zero, while on the interval [1/2, 1] we have h2 = f- f2. Therefore,

1 1 1 1
2 = e =J(f-&f =] A-A2)dr=1/6.
0 1/2 1/2 0

Q.E.D.
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§3 Approximate projections and almost commuting unitaries. When
U and V are unitaries in a C*-algebra A that commute, we can define a projection
e(U, V) in M,(A) as the image of e under the map of C(T2) to A defined by sending
e2TiX and eZniy to U and V. More generally, when U and V are close to
commuting, we can define e(U, V) to be a two by two matrix over A that is almost a

projection.

3.1 Definition : Let U and V be unitaries in a C*-algebra A . We now
consider f, g and h to be functions definedon {ze C : |z|] =1 } so we can use the
functional calculus to define f(V), g(V) and h(V). Define e(U, V) to be the matrix

over A

(V) g(V) + h(V)U
e(U,V) =

U*h(V)+ g(V) 1-f(V)

For any unitaries, e(U, V) is selfadjoint, and if U and V commute, then
e(U, V) is a projection. In order to explore the continutity properties of the function e,

we need two lemmas.

3.2 Lemma: For any fe C(Sl) , the function U > f(U) is uniformly

continuous on the set of unitary operators.

Proof: Given any € > 0, there is a polynomial p which appoximates f to
within €/3 on the unit circle. Any polynomial is uniformly continuous on a bounded set
of operators, hence there is a number & >0 such that |[U - V|| <8 implies that

lpU)=p(V) || <&/3 forany Uand V € u(@). Whenever |[U- V| <8,
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| fU) -V | <N EU) -pU) || + IpO)-pW) || + IIp(V) -f(V) | < €

QED.

3.3 Lemma: Let fe C(Sl) . For unitaries U and V, ||f(V)U - Uf(V)|] tends

toward zero uniformly as |[UV - VU|| tends toward zero.

Proof: Let € be given. By lemma 3.2 there exists 6 such that || U*VU- V| <
& implies that |[f(U*VU ) -f(V)|| <€. Since

IFCVIU - UE(V)Il = [U*RV)U - £(V)]| = [If(U*VU) - £(V)|

we are done. Q.E.D.

These lemmas prove:

3.4 Proposition: The function ¢ : UH) X UH) - My(B(H)) is

uniformly norm-continuous.

3.5 Proposition: There exists a constant M such that if |[UV - VU|| <M, then
1/2 is not in the spectrum of e(U,V). More generally, || e(U, V)2 -e(U, V)| tends

toward zero uniformly as the commutation error ||UV - VU || tends to zero.

Proof: Notice that this says nothing about U and V converging. In fact, if U,

and V, are unitaries in varying C*-algebras A the lemma says that if

n:?
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| UpVy - VpUy [ = 0 then [l e(U, V)2-e(U, V) [| = 0.
We begin by calculating the square of e(U, V). Identifying f, g and h with
f(V),g(V) and h(V),

f g+hU f g+hU
U*h+g 1-f U*h+g 1-f
( gU*h + 2+ g2 + h? + hUg fg + (1 - g + fiU + hU(l - f)

\U*h+(1-U*h +fg+ (1-flg  U*hg+ (1 -2+ g2 + U*h?U + ghU

( gU*h+f+hUg g + fhU - hUf + hU

_ U*h+U*Mh-fU*h +g (1-)+ U*h2U- 12

f g+hU gU*h + hUg  fhU - hUf
= +

U*h+g 1-f U*th-fU*h  U*h20 - h?
Working out the norms in each of the entries in the error term we get:

lgU*h+hUg || =2||hUg || =2 ||hUg-hgU || =2 || h(Ug - gU) |
<2|h][||Ug-gUll =2|[Ug-gUll

| hU - hUf || = [|h(fU-UH || < [h]||[fU - Uf|| = || fU-Uf||
|| U*h - fU*h || = || fhU - hUf|| < || fU - U]

IU*h2U -h2|| = ||h2U-Uh2?|| < ||h2U - hUh| + | hUh - Uh? |
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< ||hU-Uh|+||Uh-hU|l = 2||Uh-hU ||

Thus by lemma 3.3 we are done. Q.E.D.

Since we will need these estimates again later, we record them as a corollary.

3.6 Corollary: For any unitaries U and V in a C*-algebra A ,

le(U, V)2 -e(U, V)| is less than or equal to

2(]| Ug(VYU* - gV) I| + [ UECV)U™ - £(V) || + || Dh(V)U* - h(V) |}) .

§4 Voiculescu's example: This section provides a proof of theorem 1.1. The
main idea in the proof is to compare the spectral projections of e(S;, Q) to the

projections e(Up , V) obtained from commuting unitary matrices.

4.1 Lemma: If U and V are commuting unitaries in M,(C) , then the

projection e(U, V) € M,,(C) has dimension n.

Proof: Let t denote the trace on M,(C) normalized so that T(I) = n. Then

e(U, V) =1) +t(1-f)=n. Q.E.D.

For the rest of this section, let ¢ denote the characteristic function of the interval

[1/2,2]. Aslong as || UV - VU || is less than the constant M of proposition 3.5, the
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spectrum of e(U, V) will have a gap around 1/2, and the projection (e(U, V)) will be
in the C*-algebra generated by U and V.

4.2 Theorem: For large values of n, x(e(S,, Q,)) is a projection of

dimension n-1.

Before proving theorem 4.2, we shall see how theorem 1.1 follows from it.

Actually, we prove a slightly stronger result:

4.3 Theorem: There do not exist paths of unitaries U,(® and V,® from S,

Q,, to the identity such that

lirIln 51t1p I Un(t)Vn(t) - Vn(t)Un(t) | =0.

Proof: Let e, = e(U,®, V(V) . This is a continuous path of matrices from
e(Sp, Q) to e, D). If lim, sup; || UyOV,® - v OU, O were equal to zero then,
for large n, %(e,(M) would be a continuous path of projections from x(e(Sy, 2,)) to
e(I,I) =e;; . This would imply that dim Y(e(Sp, 2,)) =n for large n, contradicting
theorem 4.2. Q.E.D.

We now proceed with the proof of theorem 4.2. It seems odd that e(S, , Q)
has trace n and yet only has n - 1 eigenvalues near one. The reason that this can happen
is that, as the next lemma shows, the "spectral errors"

max min A-s| = [le(Sy, Q) - XE€Sy, Q) i
Ae 6(e(S, Q) 5=0,1 w )~ 26 P



are tending toward zero only on the order of 1/n. Therefore the trace does not give an
accurate reading of the dimension of X(e(S,; , €2,,)) .

For notation, we now write e, for e(Sp, Q). Also, S, implements the shift
automorphism on C*(Qn) which we denote by o . Any element of C*(Qn) is a
diagonal matrix, and so a multiplication operator. If k is any function on R/Z then we
letk, (or simply by k again when this is clear from the context) denote the n by n
matrix
[ k(A) )

k(2A)
k(3A)

k(1) )

where A (or A,) equals 1/n. Sometimes we shall wnte S instead of S, .
4.4 Lemma: As n =, |le,-x(e,) || = 0 atleast on the order of 1/n.
Proof: What we wish to show is that nl| e, - x(e,,) || is bounded. Since
|x-x(x)| < 2[x2-x|
for all real numbers x ,
llen-x) Il < 21l ex2-eql

so it suffices to show that nl| e:n2 - e, || is bounded.

Let k denote any smooth function on the circle. Then

19
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ISk - kSpll = Il SgkSy* - kil = [l ouk) - k|

sup | k(pA) - k((p+1)A) |

which is bounded by | k' ||.,A = || k' l|l/n . By corollary 3.6,

n)l ep?-en Il < 201 &lloo + Il Flloo + I Mlleo )
Q.E.D.

The trace can be used to give an accurate count of the eigenvalues near one if we
replace the €, by matrices whose spectral errors vanish on the order of 1/n? . We cannot
calculate X(e,,) without knowing a priori the spectral decomposition of e, , but we can
apply a polynomial approximation. The polynomial 3x2 - 2x3 is a second degree
approximation to % at zero and one, and so will turn the 1/n convergence into 1/n2

convergence.
4.5 Lemma: lim (dim x(e;) - ©( Sen2 - 2en3) )=0.

Proof: Let p(x) = 3x2-2x3. Since p(0) = 0 and p'(0) = 0, if A, — 0 onthe
order of 1/n then p(A,) — O on the order of 1/n2 . Similarly, p(1)=1 and p'(1)=0
soif A, =1 onthe order of 1/n then p(A,) = 1 on the order of 1/n2.

By the spectral mapping theorem and lemma 4.4, || p(e,) - X(ep) || = 0 onthe
order of 1/n2 . Therefore the n eigenvalues of x(e;) and those for p(e,) differ by at
most a constant times 1/n2 , 0 lim (t(x(ep)) - T(P(e))) = 0. Q.E.D.

4.6 Lemma: t(enz) =n.



Proof: In lemma 3.5 we saw that en2 equaled e, plus

gS*h + hSg  hf(S - Sf)
Mﬂ =
(S*f-£S*)h  S*h2S - h2

Thus it suffices to show that T(M) = 0. Since gS*h and hSg are zero on the diagonal,
they have trace zero. Therefore, T( Mp ) = 1( gS*h + hSg ) + 1( S*h2S -h?) =
1(h28S*)-1(h2)=0. QE.D.

4.7 Lemma: lim (t(e3)-n)=1/72.

Proof: Using the last lemma, we find that t(en3) =1(ey(eq + Mp)) =

21

'c(enz) +7(eyMp)) =n + (e, M) . It suffices therefore to prove that lim t(e,Mp,) = 1/2.

The coefficient of SO in the top left-hand corner of the matrix e M, is
hS(S*f - £S*)h = h(f - a(H)h .
The coefficient of SO in the lower right-hand corner is
S*h2(£S - Sf) + (1 - £)(S*h?S - h?).
Using the fact that T(xy) = t(yx) , we see that

weMy) = (- af)h?) + Th(f - af)) + (1 - DH(arl(h?) - h2))
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= 21((f - a(f)h?) + (1 - H(el(h?) - h?))

For any two smooth functions r and s on R/Z

T(r(s - a(s)) = X r(pA)[s(pA) - s((p - 1)A)]
— Jr(t) ds(t)

= [rs

and similarly , T(r(s - al(s)) = - [rs'. Therefore

e My) — 2/h2F + J((1 - H@?Y
2/n2f + 2fhh' - 2[fhh’

2(1/6) + 0 - 2(-1/12)

172

il

by lemma 2.2. Q.ED.

This finishes the proof of theorem 4.2 since

lim (dim Y(e) - n) = lim (t( 3,2 - 2e,3) - n) = lim (- 7( 2e,) + 2n)
= 21lim(t(ed)-n) = -1.




Chapter II: An AF embedding of C(Tz) which is faithful on Ky

§1 Introduction: The map v : C(T2) » A/] defined in the first section of
chapter one induces an injection on K, . While /] itself is not an AF algebra, it is
constructed out of finite-dimensional C*-algebras, and the map Yy demonstrates that
sequences of matrices are able to capture all of KO(C(T2)) . As we shall see, it is in fact
possible to construct an AF embedding ¢ of C(T2) which is closely related to v .
Therefore, we will be able to use the results from chapter I can be used to calculate the
K-theory of ¢.

One possible AF embedding comes from looking at C(T?2) as the transformation
group C*-algebra C(T) » Z , with trivial action, and applying the construction in [P1].
This will turn out to be injective on K (corollary 5.4 to theorem 5.2), but the K-theory of
the AF algebra is hard to describe. By modifying Pimsner's techniques a little, one obtains
an embedding into a simpler AF algebra. Our main result, theorem 5.2, is that there is a
map ¢ from C(T2) to an AF algebra A such that the induced map on K is the natural
embedding of Z2 into Q(2*°)®Z . Here Q(2°°) denotes the dyadic rationals.

Proposition 2.1 then tells us that ¢ is itself an embedding of C*-algebras.
§2 Some negative results: This section collects together a few results
concerning mappings from C(T 2) to AF algebras which cannot be faithful on K-

2.1 Proposition: Let ¢ : C(T2) > A be a homomorphism into any
C*-algebra A. If @ 4: KO(C(TZ)) — K(A) is injective then ¢ is injective.

23
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Proof: Suppose that @ : C(T2) - A has nonzero kernel J. Then J = Co(O)
for some open subset O of T2. Let D be an open disk in O that does not intersect the
one skeleton S! v S! of T2. Since ¢(Cy(D)) =0, ¢ factors through C(T2\D).
This latter C*-algebra is homotopic to C(S!v S!). Thus ¢, factors through
Ko(C(S'v S1)=Z so ¢, is not injective. Q.E.D.

2.2 Lemma: For any unitary U in a C*-algebra A , the projections e(U, 1)

and e(1, U) are homotopic to the trivial projection e,; .

Proof: It is immediate from definition 1.3.1 that e(U, 1) equals e;; . By

definition, e(1, U) is equal to

f(U) g(U) + h(U)

h(U)+ gU) 1-£(U)

Let f; be a homotopy of f to the constant function one such that 0<f; <1, and let k; =

(f; - £2)V2 . Thensince g+h= (f- 2)!/2, the matrices

fU)  k(U)
kU) 1-f(U)
form a path of projections from e(1,U) to €;;. Q.E.D.

2.3 Proposition: There exists a constant C > 0 such that the following holds:
Suppose U and V are commuting unitaries in a C*-algebra A . If there exist commuting
unitaries U' and V' suchthat ||[U-U'|| £Cand || V-V'|| £C, and if either U’ or

V' generates a finite-dimensional subalgebra, then e(U,V) is homotopic to the trivial
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projection €;; .

Proof: Because the functon e is uniformly continuous, there exists a constant
C>0 suchthatif JU-U"'|| £Cand ||V-V'|| £C then || e(U,V)-eU, V)| is less
than one half, and so these projections are homotopic. By assumption, the spectrum of
U' or V' is discrete; assume this holds for U'. Since the spectrum of U’ is discrete,
the functional calculus gives a path U; from U' to the identity which, at every point,
consists of unitaries in A which commute with V'. Then e(U;, V') is a path of
projections from e(U,V) to e(I, V') which is homotopic to the trivial projection. Since
e(U', I) equals the trivial projection, the same proof works if it is V' that lies in a

finite-dimensional subalgebra. Q.E.D.

2.4 Corollary: Suppose A is an AF algebra. If ¢: C(T2) — A maps into the
center of A, then @4 (Kq(T 2)) is cyclic.

2.5 Proposition: Suppose {7} is a family of finite traces on a C*-algebra A

for which the corresponding homomorphisms T, : Kg(A) = R are separating. Then for

any map ¢: C(T2) > A, @4 : Kg(C(T2)) - K((A) is not injective.

Proof: A trace T is extended to matrices by defining t(Zaij@)eij) = 21(a;;) -
With this definition it follows that ©(e(U,V)) = t(ey1) . If there is a separating family of
traces then @y ([e(€2™X, e2TY)]) = e(U,V) = @, (e 1] - QED.
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§3 The Bratteli diagram: According to proposition 2.1 and corollary 2.4, to
find a mapping of C(T2) to an AF algebra which is injective on Ky we must consider
only embeddings into noncommutative AF algebras. It would also be nice to find an
embedding that allows us to take advantage of the K-theory calculations from chapter L
These results cannot be used directly; the matrices S, and €2, must be modified since
there seems to be no way to construct an AF algebra in which both the S, and the Q,
converge. This type of problem comes up in Pimsner's theorem on embedding cross-
product algebras into AF algebras. The connection here is that U, and V,, represent the
natural generators of C(Z,) » Z,,. (The action being rotation of the n points.)

For the present purposes, it is best to apply the Fourier transform on only one of
the variables on the torus and identify C(T 2y with C(T) » Z where the action is the trivial
action. Pimsner's theorem then provides an embedding into a highly noncommutative
algebra. Indirectly we will prove that this embedding is injective on the level of K. It is
not necessary to know Pimsner's proof [P1] to follow the proof of theorem 4.1, but it
does provide the motivation for definition 3.2 and figure 3.1.

To construct the nth level of Pimsner's AF algebra, we need to pick a covering of
the circle by open sets. The natural way to do this is to use 2" intervals, each of which

has intersection only with its two neighbors.



We also need to pick integers m(n) that determine the power of the
homeomorphism that we use. Although in this case the homeomorphism T is the identity
map, SO TM(N) = T | the conversion of pseudo-orbits for one power of T to a lower
power still depends on the choices of the m(n). The easiest choice is m(n) = 21,

Any point on the circle will be in at least three pseudo-orbits; the one that consists
of just that point, and the orbits that run around the circle in one or the other direction.
Deviating from Pimsner's construction a little, we only consider the trivial pseudo-orbits
and the one that runs around the circle in the positive direction. The algebra that is

associated to this collection of orbits is

M2n @Ml @Ml @ ces @ Ml.
(2™ copies)
It is easier to work in the larger algebra Myn @ Myn. The approximate isomorphism that
Pimsner defines will send the function x> e2TiX (5 the matrix V,, and will send the

identity in Z to U, , where we define Uy and V as follows:

Let Vn = 1Vn @ rVn where

Qyn
202:1 (2" times)

an

Let Un = lUn &® rUn where

27
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The embedding into the next stage is completely determined by choosing a way to
decompose the pseudo-orbits of TMM+1) with respect to a cover by m(n+1) = 20+1
intervals into pseudo-orbits of TM(M) with respect to a cover by m(n) = 2% intervals. The

pseudo-orbit that runs around the circle can be viewed as a circular graph on 221! points.

./"\

Regarded as a pseudo-orbit for the coarser covering, we get a path around 2" points that

alternately stops at a point and then moves on to the next.
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A pseudo-orbit for TM(@+1) = (rMN)y2 gives a pseudo-orbit for TMM) by filling in
intermediate steps, so that by looking at every other point we recover the original
pseudo-orbit. In this case, it once more means alternately staying put and then following

the given pseudo-orbit.
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0

< o

/ |
O
3)
since
 J L
becomes \
- 0
and

We may now conclude that the Brattelli diagram shown below is (a modified version of)



the one obtained via Pimsner's techniques.

1
1
|
16 ®

(1) J |@
4 © ® 4
o)) 3) |@
1 ® e !

Since the matrix

63
)

the same AF algebra comes from the diagram

is the square of the matrix

31
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le® ®1

figure 3.1

This is the preferred Brattelli diagram for defining the AF algebra. One small
problem is that the matrices U, and V,, live in every other level of the inductive limit. To

correct this, we introduce matrices to fill in the gaps.

3.2 Definition: Let Vkm = Vem® Vkm Wwhere (Vi = Vikm 18

the k'm by k'm matrix

Q
%, (m times) o2
lvk,m = rVk,m = where Qk =
Qk O)k

Define Uk,m in Mk.m®Mk.m as lUk’m@rUk’m
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— O
— D

-

— O

lUk,m =

Of course, we will mostly be interested in the case where m and n are powers of
two. In particular, we are interested in the sequences U1,1 »Uz1:Uz9, U4,2 ... and

Vi Vo1 V22, Ve ooe

§4 The inclusions: Motivated by the last section, we look for ways to put the
Uk, m and Vi into an AF algebra that has figure 3.1 for Bratteli diagram so that
convergence is forced. Notice that the righthand matrices Uy m, and Vi, commute,
so the interesting K-theory will come about on the left side.

The standard embeddings that correspond to the Bratteli diagram do not map the
Uk,m anywhere near the corresponding matrices in the next level. The major work in this
section will be in replacing the inclusion with ones that define the same K-theory while
turning the U's and V's into convergent sequences. The proof of Proposition 4.1 is just
a specialization of the proof given in [P1].

The calculation of the K-theory of the embedding (Theorem 5.2) will not depend
on the exact inclusions obtained, only on the existence of inclusions which force the
convergence of the Uk,m and Vk,m . Different inclusions will result in isomorphic AF
algebras, but after identifying the algebras, the embeddings of C(T2) will be different,

possibly even non-homotopic.
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4.1 Proposition: There exist embeddings ¢,5n: Myn &® Myn —
Mjn+1 @ Myn+1 for which the associated Bratteli diagram is figure 3.1 and for which
both U2n’2n , U2n+1,2n , U2n+l’2n+l , ... and V2n’2n . V2n+1’2n , V2n+l’2n+1 y e

form convergent sequences in the inductive limit.
Proof: Any embeddings ¢ : Myn © Myn — Mjn+1 © Mjyn+1 that have the

B

will define the same AF algebra. As a first approximation, let yyn : Myn @ Myn —

K-theory of the matrix

Mjn+1 © Mjn+1 be the map that shuffles the standard bases together; more generally

define LT MP» @ Mll

standard bases of the left and right factors of MH @ Ml-l' Let y= Wy =1V ® v where

- My, ® My, . Specifically, let {lc”j} and {rc“j} be the

W(ieH) = 122 o5) WGeH) = 12051 1)
V(eH) =0 (et = 2o + 2201 g

We would like to find unitaries by which to conjugate to bring the images of the
unitaries at one stage near the unitaries at the next. We begin with the easier case of going
from U2n’2n and V2n’2n to U2n+1’2n and V2n+l’2n . (This corresponds to passing to
a finer cover while keeping the power of the homeomorphism the same.) Slightly more
generally, we consider the matrices (U k,m) and Y(Vy ), and how to make them
close to Upg m and Vop -

There are four pairs of matrices to consider, l‘l’(Uk,m) and 1U2k,m ;

VUg m) and Upp m 5 WV m) and (Vo m 3 VVkm) and Voxm -



r\V(Uk,m) =

IW(Uk’m) =

IW(Vk’m) = r‘l”(vk,m) =

-t O
— O

1

6‘21( .(m times)

T Qg

where Q'Zk =

where Wzk =

€ M2k

O
QO
OO
—t

o = kth root of unity

10
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€ M2k

One pair is exactly equal; w(Uy ) = rU2k,m . The other right-hand pair is almost

equal;

Il pw( Ugm) — rU2k,m | <m/k.

On the left side, however, we find that || 1\|’(Uk,m) - 1U2k,m ||=2 so y must be

modified. The modification is done by conjugating by a unitary in Moy, ©® Moy, .
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Let Y be the solution to the equation W5 Y = S91. Specifically,

]
o

Q
S—

Since the spectrum of Y is discrete, the functional calculus produces an mth root YU/m
for which ||I-YVM|| <2n/m. Since Y commutes with Q' ,sodoes Y™ . The
unitary needed to conjugate by is then

(y1l/m 3

Y2/m
Y3/m

Y= Youm =

\ Y

Since Y' commutes with y(Vy ),

IY* WV )Y - Vigg

= IWVem) - Vogmll
= max |0)0p' 0.)0p+1‘ < wk.
p=1, ... ,.2mk

The definition of Y implies that Y- V™MW, Y = Y-1/mS,, so



(0 Y-l/ms2k 3\
Y-l/m 0

yllm ¢
Yt*(pvl (Uk,m)Yl - Y-l/m O

Y-l/m 0

It follows that || Y'*l\y(Uk’m)Y' - U m || € 21/m.
The required embeddings are then @3, = Adygry°Wn. So far, we have
calculated that
| 92n(Un on) - Upn+l gn || < max { a2+, 0 } = p27+!

and I (pzn(Vzn,zn) - V2n+1’2n I <max { w217, 7271} =720,

The case of the maps @5, is mostly the same. The main thing to notice is that

there exists a change of basis that takes the matrices Uy 5, and Vi, overto

Q'&'k (m times) Q'bvk

QY Qy

37
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— O

— O
—t O

The required change of basis takes eg o € where
g=b(mk) +ak +c¢ and h=a(2k)+c(2)+b

forall 0<a<m,0<b<1,0<c<k. The unitary to conjugate by is Y'Zk,mEBY'ka

followed by the basis change. The result is
I (pzn(U2n+l’2n) - U2n+1,2n+1 II.< n2-0+l
and (pzn(V2n+1,2n) = V2n+l’2n+1 .

These estimates show that in the inductive limit algebra determined by the @, the

U and V sequences are Cauchy. Q.E.D.

§5 The K-theory:

5.1 Proposition : Let A be the AF algebra defined in the last proposition.
Then Kg(A) = Q(27)®Z where Q(2%) denotes the group of diadic rationals
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{p2™|pe Z,ne Z*}. There is an exact sequence

0—->x >A->5UHF2*®) -0

where X denotes the compact operators and UHF(2%°) is the type 2 UHF algebra.
The positive cone of Kg(A) is {(r,k) | r>0 or (r=0 and k20) } and the order

unitis (1,0).

Proof: Let G, denote Ko(Mon® Myn). The K group of A is the limit of

the sequence

GI—)G2—)G3—-)G4—)
187 - 187 - 1PZ - 197 —...

where the inclusion to the next stage sends (a,b) to (a+b, 2b). The isomorphism to
Q(2%)®Z is given by sending (a,b) € G, to (b-2", a-b). This is well-defined since
(a+b, 2b) € Gy, issentto (2b-2™1, (a+b)-2b).

Under this identification, Kp(A)* = UG,* . Since

Gy ={(b2Ma-b) | a20,b20}
={(@k) | r20, re Q2™ , k2-r2" },

we see that

KoA)F = U{@,k [ r20, re Q2™ , k2-r2" }
=U{(@k) | r20, IMe N suchthat k=2-rM }
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={(@k | r=0,k20 Ju{(k,1) | r>0, k>-0 }.

The exact sequence can be seen directly from the Bratteli diagram. The left side
has no mappings leaving it, and so forms an ideal isomorphic to the compact operators.
The right side of the diagram, which determines the quotient, is the diagram for the type
2% UHF algebra. One can also obtain K(A) as an unordered group from this exact
sequence. QE.D.

.
.
*
*
*
*
*
*
-
.

UHF(2%)

The unitaries U = lim Uznonand V =lLm Van 5n define a homomorphism
from C(Tz) into the AF algebra A. Call this map ¥. In order to describe the K-theory
of ¥ we need to choose generators of KO(TZ) . We make almost the usual choices,
namely [1] and [1] - [e(e27dx, cZniy)] . This defines an isomorphism 72 > KO(C(TZ))
and we have already defined an isomorphism Kg(A) = Q(2%)®Z . These are the
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identifications we have in mind in the statement of 5.2.
5.2 Theorem: The homomorphism ¥, : KO(C(T2)) — Ky(A) sends (s,t) €

72 = Ky(C(T2) to (5270, t) € Ky(A) ,ie. ¥y is the natural inclusion of Z2 into
QQ2>)®Z .

Proof: Since W is unital, it carries the order unit of KO(C(TZ)) to the order unit

of Kp(A),ie. (1,0)=[1] issentto [1]=(1,0) € QQ2*™)®Z . The element (1,-1) is

sent to
(my ,ng) = [e(U, V)] = [ X(e(Ugngn, Von on))]  (for large n )

where, as before, ) is the characteristic function of the interval [1/2, 2] . Since the
algebra UHF(2*°) has a faithful trace, we know by proposition 2.5 that my = 1€
Q(2*) and so

ng = lim (dim x(e({Upn pn, Von,n))-220).
Here 7 is the regular trace on My with value one on a rank one projection. Of course,
the individual traces do not fit together to form a trace on A . We wish to show ng =-1.
This will follow from the next lemma, and 1.4.2. QE.D.

5.3 Lemma: For large n,

dim %( e( 1U2n’2n , 1V2n,2n )) = dim %( e( 1U22n,1 , 1V22n,1 )
=dim x(e(S92n,2y2n)).
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Proof: We begin by looking at the matrices lUk,m and rUk,m in a different
basis. Let W be the unitary corresponding to the permutation

ak+b > bm+a 0<a<m,0<b<k).

Conjugating by W , we find that W*Uy W = Sy = Ugyy 1 and

((© )

. (m times)

® (,)2
(01;12ﬁmes)
w* IVk,m =
mk

. . (m imes)

\ ok

where @ =kt root of unity. This is homotopic to Q. = lem,l via a path of diagonal
unitaries v(® for which adjacent diagonal elements are within 2r/k, i.e., unitaries which
commute with Sy, to within 2n/k . For large k, proposition 1.3.5 implies that 1/2 is
not in the spectrum of e(Sy , V(Y ). Applying ¥ proves that

WD x(e(Uy m » Vk,m WD = xe( W* Uy /W, W*Vy W)
= X€(Ukm,1» WV mW )
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is homotopic to

X€(1\Ukm,1 >1Vkm,1)) -

Therefore, for large k, X(e(lUk,m , le,m )) is equivalent to ¥(e( lUkm,l , IVkm,l))
Q.E.D.

The mapping ¥ was found by a close examination of Pimsner's work. In order to
avoid the details of his construction, the existence of ¥ was proven directly in
proposition 4.1. It is interesting to note that ¥ factors through Pimsner's map.
Unfortunately, the proof of this requires bringing in all the complexities of Pimsner's
general construction. In order to avoid this, I offer only a sketch of the proof below. I

hope to prove this more rigorously in a future paper.

5.4 Corollary: Let @ : C(Sl) «Z — B be the embedding into an AF algebra
defined by Pimsner in the special case of a trivial action where the open covers and
multiplicities selected are those from section 2 . The induced map @, : KO(Tz) - Kp(B)
is faithful.

Proof: Let B, = @Mlcl where the sum is over all pseudo-orbits of (id)m(n)
for the cover by 21 sets. Here |o| denotes the length of the pseudo-orbit. Let B, be
the corresponding sum, but taken only over the orbits that run in the positive direction.
The projections w, : B, = B’ commute with the inclusion maps because any
pseudo-orbit that runs in the positive direction can only be decomposed into positive
pseudo-orbits. Let 7 : B — B' denote the limit of the 7, .

We have B'n = M2n @ M1® ...® Ml and in section 2 we defined A, =
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Myn @ Myn. Let 1, : B, & A, denote the inclusion with 1:B'— A the limit. By
the way that U and V were defined, the map W factors as

Since W, is faithful, sois @, . Q.E.D.
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Chapter III: Semiprojectivity

§1 Definition of semiprojectivity: Following Effros and Kaminker [EK1],
we define the notion of semiprojectivity for C*-algebras. Let Cp denote the category of
C*-algebras and arbitrary homomorphisms and let C; denote the category of unital
C*-algebras and unit-preserving homomorphisms. Let [A,B]; denote the set of

homotopy classes of homomorphism in C; from A to B.

1.1 Definition: Let A be a unital C*-algebra. If [A, lim B]; = lim [A, B, ,

for every system of C*-algebras in C;

?1 P2 O3

By >By—>Bz—> ¢, injective,

then we say that A is semiprojective in C; .

Unless stated otherwise, all algebras and homomorphisms will be unital, and the
term semiprojective will refer to semiprojectivity in Cq .
Finding semiprojective C*-algebras is greatly simplified by the following

equivalence [EK1]:

1.2 Theorem: A C*-algebra A is semiprojective in C; if for every system of

C*-algebras in C;

?1 92 93

By 95 By—> Bz ¢, injective,
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every homomorphism y: A — lim B, is homotopic to a homomorphism into some B,.

§2 The rotation algebras: Blackadar [B1] has shown that C(’1‘2) does not
satisfy his definition of semiprojectivity, which is more restrictive than the definition

above. We show that C('I‘2) does not satisfy the less restrictive definition either.

2.1 Proposition: C(T2) is not semiprojective.

Proof: Proposition I1.2.3 shows that any homomorphism from C(T2) to a
finite-dimensional C*-algebra is not injective on Ko - As a consequence, the
homomorphism ¥ : C('I‘2) = A defined in chapter 2 is not homotopic to a map with
finite-dimensional range. Q.ED.

2.2 Corollary: C(S2) is not semiprojective.

Proof: Let p : T2 — S2 be the surjection defined by collapsing the one-skeleton
of T2 to a point. This induces a map, which we also call p , from C(S2) to C(T2),
which induces an isomorphism on the level of Ko . Then Wep : CS%) > A isa
homomorphism to an AF algebra that is injective on Kp-

To finish the proof, we must only show that any homomorphism 7 : C(S%) » F
is non-injecitve on K, whenever F is finite dimensional. The range of 1 will be a
finite-dimensional commutative C*-algebra, and so has zero second-cohomology. The
Chern character now shows us that 7, : Ko(C(S2)) = Ky(F) Kkills the second

cohomology of $2, and so is not injective. Q.ED.



For any real 0,let Ag denote the rotation algebra
CYU,V | UV=e2mbyvy Ul -u*, v-1-v*),

If 0 isirrational, Ag is simple so we canuse any U and V that satisfy these relations to
generate Ag . If O is rational, we must choose universal unitaries for which UV =

e2™MOvy. When 6=0,A9=C(T2).
2.3 Theorem: For any irrational number 8, Ag is not semiprojective.

Proof: Since Ag is simple and infinite-dimensional, the only homomorphism
from Ag into a finite-dimensional C*-algebra is the zero map. By the results of Pimsner
and Voiculescu [PV1] there is a unital homomorphism of Ag into an AF algebra that is an
isomorphism on Ky . This homomorphism cannot be homotopic to the zero map, and so
is not homotopic to a map with finite-dimensional range. Therefore Ag is not

semiprojective. Q.ED.

Since the rational rotation algebras are strongly Morita equivalent to C(T2), it
would be nice if we could show that unital C*-algebras which are strongly Morita
equivalent to a semiprojective C*-algebra are semiprojective. I believe that it is unknown
whether or not this is true. However, when semiprojectivity fails due to a K-theoretic
obstruction, it is possible to show that non-semiprojectivy is preserved under strong
Morita equivalence. Iam indebted to Marc Rieffel for pointing out this line of reasoning to

me.
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24 Lemma: Let B be a unital separable C*-algebra, and suppose that
x € Ky(B) . Let C be any separable C*-algebra which is stably isomorphic to B, and
let x' be the element of K(C) which corresponds to x (for some fixed choice of
isomorphism between B®K and C®X ). If x is in the kernal of Ko(®) for every
*-homomorphism ¢ : B — F with F finite-dimensional, then the same property holds for
C and x'.

Proof: Assume that ¢ :C — F is given, with F finite-dimensional. The given
choice of a stable isomorphism defines an injection 1: B — C®X which induces an
isomorphism of K-theory, and 14(x) = x' by assumption. (We will everywhere identify
Ko(D) with Ky(D®X) .) Consider the composition y = (¢®id)-1: B - F®K . The
projection p = y(1) must be finite-dimensional, since F®X is isomorphic to a finite
direct sum of copies of X . Therefore Wy has finite-dimensional range, and so by
assumption Y,(x) =0. (We use the fact that equivalent projections in a subalgebra
remain equivalent in the larger algebra.) Now @, (x") = (¢®id),(x) = W, (x) =0.

Q.ED.

2.5 Lemma: Let B and C be unital C*-algebras that are stably isomorphic,
and let x and x' be elements of Ky(B) and K(C) which correspond under some fixed
choice of stable isomorphism. If there is a unital *-homomorphism ¢ of B toan AF

algebra A for which @,(x) is nonzero, then the same holds for C and x'.

Proof: As before, the choice of stable isomorphism determines amap 1:C —
B®K . Let pc B®K denote the projection ((¢®id)-1)(1) and let ¥ = p((¢®id)-1)p.
Then pAp is a unital AF algebraand v is a unital *-homomorphism. If y,(x") were

zero in pAp, then it would be zero in A , but it cannot be since ((P®id)e1),(x") =



(¢®id)4(x) # 0 by assumption. Q.E.D.

This in particular applies to the rational rotation algebras.

2.6 Corollary: For any rational 0 , there exists a unital *-homomorphism

¢:Ag— A suchthat A is AF and ¢, is an injection on K.

Proof: This follows from the last lemma and theorem I1.5.2. Q.E.D.

2.7 Theorem: Suppose that A is a seperable unital C*-algebra, and that x €
K((A) . If there is a *-homomorphism ¢ into an AF algebra for which ¢4 (x) #0 and
yet Yi(x) =0 for every *-homomorphism W : A — F with finite-dimensional range,
then every separable unital C*-algebra which is strongly Morita equivalent to A is not

semiprojective.

Proof: This follows immediately from the last two lemmas and the fact that for
separable C*-algebras, strong Morita equivalence implies stable isomorphism.
Q.ED.

2.8 Corollary: The rational rotation algebras are not semiprojective.
Proof: Theorem IL5.2 and proposition IL2.3 imply that C(T?) satisfies

the conditions of theorem 2.7. The rotation algebras are all strongly Morita equivalent to

C(T?) and so are not semiprojective. Q.E.D.
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§3 Bouquets of circles: Given two unitaries U and V, the relation UV=VU
is not stable in the sense that if this relation is only approximately true, there need not be a
path through approximately commuting unitaries to a pair that commute exactly. More

precisely, for some C*-algebra A, the set

Ce(A)={(U,V) e UA)xU(A) | [UV-VU| <e}

contains elements that cannot be connected by a path in Cg to Co . For if this were true,
C('I‘2) would be semprojective.

The commutativity of two unitaries implies that they are simultaneously
diagonalizable. In a heuristic sense, there are two opposing ways that unitaries can
approximately commute. The first is that they are nearly simultaneously diagonalizable. In
this case it should be possible to "push” the spectral measure of one unitary to the spectral
measure of the other. So pairs of nearly simultaneously diagonalizable unitaries should be
in the connected component of Cg in C.

On the other hand, one of the unitaries can take the eigenspace of the second
unitary, say with eigenvalue A, to the eigenspace of nearby but distinct eigenvalue 6(A) .
The only obvious way to obtain a homotopy of these matrices to unitaries which commute
is to bring the appropriate eigenvaues together, that is to move A over to 6(A) . This is
not always going to be possible to do for all the eigenvalues simultaneously. This is
exactly what was going on with the unitaries in chapter IL.

The quotients of C(T' 2) can be semiprojective even though C(T2) is not. These
are all homotopic to C(X) where X is one or zero dimensional. We concentrate on the
simplest interesting quotient, C(S!v S1). The key to working with homotopies of

maps from this C*-algebra is to express it in terms of generators and relations. There are
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many possible presentations, and the ones in proposition 3.1 are perhaps not the most

natural. However, expressions such as
Q-U-UHI22.-v-vHe-U-UuHi2

arise when looking for projections in subalgebras of C(T2) . It is possible to show that
the Noetherian algebra generatedby U, V and (2-V - V*1/2 has the full K-theory of
the torus.

For notation, let C*(Tl, Ty,..., Ty | p1(M)=0, pa(T)=0, ..., p(T)=0 ) denote
the universal C*-algebra generated by n operators Tj, T»,..., T, that satisfy the k
polynomial relations p;(T)=0, pp(T)=0, ..., px(T)=0, T = (Ty, Ty,... , Ty) , assuming

that such an algebra exists. See [B1] for a precise definition.
3.1 Proposition: Let Slv S! denote a bouquet of two circles. Then

i) cslvsl) = 8; =C¥U, V| U and V are commuting unitaries
and 2-U-U"Q2-V-VH=0)

i) CSlvsl) = 8y =C* U, V|Uand V are unitaries such that
2-U-UYH2-V-VH=0)

iii) C(S1v S1) = 83 = C*U, V| U and V are unitaries such that
Q-U-uH122.-v-vHe-u-uHl2-0)

Proof: i) Since C(T2)=C*(U, V|U and V are commuting unitaries ), B is

a quotient of C(T2) and so corresponds to a closed set Z in T2 . More precisely, Z is
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equal to the zero setof (2-U-U*)2-V -V*) where U=e2®X and V=e2TY | Now

2-U-UH2-V-V* =(2-2Re))2 - 2:Re(V)
= (2 - 2-cos(2nx))(2 - 2:cos(2ny))
= (4'sin(nx))2(4-sin(mx))2 ,

which is equal to zero only if x or y is an integer. Therefore, Z = {(w,z) € c2 w=1
or z= 1}=Sle1 .

ii) Itis clear that the relations for B; imply those for By ; what is not clear is
that the generators for 89 commute. Let U and V be any unitaries on a Hilbert space
H which satisfy (2-U - U*)(2-V-V*) =0. We must show that U and V commute.

Taking adjoints, we find that 2-V-V*)2-U-U*=2-U-U%2-V-VY.
Multiplying this out and cancelling terms shows (V + V¥)(U + U*) = (U + U*}(V + V%)
so that the real parts U, and V; of U and V commute. Let D = C(Y) denote the
commutative C*-algebra generated by U, V. and the identity. Let f and g denote the
functions that correspond to U, and V.. We know that (1 - f(y))(1 - g(y)) =0 for all
points y € Y. Therefore, for every point y, either f(y)=1 or g(y)=1.

Let p denote the projection corresponding to the characteristic function of the set
f 1(1) and let q = 1-p . Notice that p may not be in B, . We have shown that
qVq=q, and certainly pUp = p. One can easily show, by working in p, q
coordinates and multiplying out U*U=1 and V*v = 1, that pUp=p and qVq = q,

so H decomposes into two subspaces such that U=I1@® U' and V=V'®1 . These
operators clearly commute.

iii) For any operators h,k20,

I h12xh1/2 =1l (hl/2k1/2)*(hl/2k1/2) =1 h1/2x12 "2 .
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Therefore, if h/2kh12=0, h2kV2 =0 and so hk = hV/2(h}/2k1/2)kV2 = 0 . Taking
h=(@2-U-U" and k=(2-V-V¥) this shows that the relations for B3 imply those
for B, . Since the relations for B; clearly imply those for B3, we are done.

QED.
For any C*-algebra A , we define
C'e(A) = {(U,V) € U(A) xU(A) | [ 2-U-UH122-v-v*2-U- U012 | < 166}

3.2 Proposition: There exists an €; > 0 so that for all € <€, and for all
C*-algebras A , there is a collection of mappings He, A : Cg(A) = Cp(A) which is
natural with respect to homomorphisms A — B and leaves C'y(A) invariant up to

homotopy.
Proof: Let U and V be unitaries acting on H such that
12-U-UH122-v-v*2-U-UH12 | < 16e.

Let E denote the spectral measure for V. For convenience we assume E is defined on
subsets of the unit interval, identified in the usual way with { z: |z} =1 }. In the last
proposition we used the projection E( (1,1) ) to find the subspace where U was the
identity. When the relation only holds approximately, we need to choose a smaller
projection p = E([3, 1-8]),8 > 0 . This will pick out a subspace where U is
approximately the identity. We will choose & later.

The operator (2-V - V*) corresponds to the function 4sin2(1tx) , 80 is bounded
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below by 4sin2(1t8) on the inteval [§, 1-8]. Therefore,
4sin?@Sp < (2-V-V*) = p < @sin@d)) 12 -v- v¥)
Multiplying on both sides by (2 - U - U*)1/2 | we obtain
2-U-uH2p02-u-uHl2
< @sin2@d) 12 - U-UH12 2.v-v¥H 2-U-Uu*Hl2
< 4¢/sin2(nd) .
Since, for a scalar 1, h*h <7 implies hh* <7 ,
P2 - U- U*)p < 4e / sin(xf)
Let M =2¢/sin2(n5). Then
p(2-U-U*p<2Mp
and

p-Re(@Up) < Mp. )

We next must calculate how close U is to the identity on pH . Write U in p,

1-p coordinates, breaking up the p,p coefficient into its real and imaginary parts:
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a=h+ik b

Writing out UU* = 1 leads to the equality k2 + bb* = 1-hZ . In terms of these
coordinates, (*) says that h>1- M. Since k2 and bb* are positive, k2, bb* < 1- (1 -
M)2 = 2M - M2 hence [k|| < @M -M2)12 and bl < @M - M2)172 - Similarly, |lc|| <
(2M - M2)1/ 2 5o that p + (1-p)U(1-p) will be near U. Itis tempting to use the polar part
of p+ (1-p)U(1-p) as the unitary that is to replace U. Unfortunately this is no longer in
the C*-algebra A.

In order to stay within the C*-algebra we approximate the characteristic function
of [3, 1-3] by a continuous function. So let &' be yet another constant, to be chosen

later, which is between & and 1/2. Let f be the function

0 ift<d or 1-0<«t
1 ifte[d',1-9']
(1) = ﬁ _LiS'—S if te [6, &1
I—Tl_-g§ if te [1-8",1-8]

Define U' =f(V) + (1-f(V))12U (1 - f(v))}/2 . (U will not be unitary.)
We need to perturb V as well so that it is the identity on (1 -p)H . Let g be the

function

1 if 1€t<d or 1-8'<t<1
git) =

exp(2mi( -lt—% ) if &<t<1-9

and define a new unitary by V'=g(V).
Since fg=gf and g(1-H12=1-H12=(1-pl2g,
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UV =f(V)g(V) + (1 - fV)V2U (1 - (V) 12g(V)
= f(V)g(V) + (1 - (V)20 (1 - f(v))112
= g(V)E(V) + g(VX(1 - fV) 112U (1 - f(vy) 12
=VvVu

and similarly, U™ commutes with V'. The unitary we want to use to replace U is
U'(U’*U’)'I/ 2 | For this to work, U' must be invertible. This in turn will follow
whenever |[U-U'|| < 1. It remains to find restrictions on € and & that force this to hold.

To simplify expressions, write f and (1 - )12 for pf(V)p and p(1-£)172p .

[

f + (1-f)1/28(1-f)1/2 (H)l/zb
U canl? d

In the 1,1 comerof U -U' we find
a-f -(1-HY2a(1-H12 = @-1)+1-H12(1 - a)(1-H12
which, in norm, is less than or equal to 2fla - 1]} <2(||1 - hj} + |[k]|). The error in the 1,2
corner is bounded in norm by ||b||, and in the 2,1 corner the error is bounded by |ic||. By
the previous estimates, we find that

U - Ul 2M + 42M - M2)1/2

If € and & are any pair for which 2M + 4(2M - M2)1/ 2 is less than one, then
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define He,S on any pair (U,V) € C'¢ by He,s(U,V) =(U",V") where U' and V' are
defined as above and U" = U'U™U")1/2.

Ifwelet q=1- X[s', 81 then q decomposes H in such a way that U" and
V' equal the identity on opposing factors. Therefore He,8 maps into C'p . The
functional calculus is natural with respect to homomorphisms so it is easy to check that
He,8 is natural. If (U, V) e Cy then U" =U'=U. There is clearly a homotopy from
g to exp(2rmit) such that (U, g((V)) is a path of unitaries in C'g . Thus the He,8
satisfy the desired conditions; all that remains is to select choices of 8 and &' for each €.

Let M, be the smallest real such that 2M + 4(2M, - M2)1/2= 1. For e<g,
= My/2, let §=38; = nlarcsin((2e/M)V/2) and let &' = (1+ 28)/4 . We define H =
He,&»: . For any C*-algebra AcB(H), Hs, A is the restriction of Hg to A.

Q.E.D.

3.3 Theorem: C(Slv S!) is semiprojective.

Proof: By Proposition 3.1(iii) and Theorem 1.2 it suffices to show that, for
every limit C*-algebra B = lim B, and any pair (U, V) € C'o(B) , there exists n such
that (U,V) can be connected by a path, in C'g(B), to C'p(B,) .

Let Hg _ denote any collection of mappings satisfying the conditions of
proposition 3.2. Choose any € <€, . Choose a pair of unitaries Uy and V; in some
B,, which are very close to U and V. Take the polar part of the linear paths from U to
Uy and V to V. This produces a path of unitaries t+— (U, V) € C'g(B) such that
(Ug, V) =(U,V) and (Uy, V) eBy for some n. Let (U, V)= He,IB( U Vi)
where IB denotes C([0,1], B). The naturality of He,— shows that (U'g, Vg ) =
He(U, V), which is homotopic to (U,V) . On the other hand, (U'{,V')) =
He (U, V) e B, Q.E.D.
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