Problem 1. Define L from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$ by

$$L(A) = A^T.$$

Since $A^T + B^T = (A + B)^T$ and $(\alpha A)^T = \alpha A^T$ this is a linear transformation.

(a) With respect to the ordered basis

$$B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

what is the matrix representing T? (This means “with respect to B and B,” so the same ordered basis is at work in the domain and target.)

(b) What is $L(\mathbb{R}^{2 \times 2})$?

(c) What is $\ker(L)$?

Problem 2. Suppose $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is defined by

$$T \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = \begin{bmatrix} 2a \\ a + b \end{bmatrix}.$$

What is the matrix representation of T with respect to

$$B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}?$$

Problem 3. Suppose $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ has matrix representation with respect to

$$B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$$

equal to

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}.$$

How is T defined?

Problem 4. Problem 14, page 183, section 4.1.
Problem 5. Determine if L is a linear transformation from $C[0, 1]$ to \mathbb{R} if

$$L(f) = \frac{1}{3} f(0) + \frac{2}{3} f(1).$$

(See problem 11, but you need to give reasoning, not just a yes or no answer like the back of the book.)

Problem 6. Determine if L is a linear transformation from $C[0, 1]$ to \mathbb{R} if

$$L(f) = (f(0))^2.$$

Problem 7. Problem 13, page 206, section 4.3.