\#1 Consider G:
 Lecture 39
(a) What is the chromatic number of G ?
(b) How many ways can G be colored with k-color, when k is the chromatic number of G?
One solution for both
(a) and (b) comes from computing $P_{G}(n)$, Using the deletioncontraction formula: page

(Patree with 8 netbere)

$$
=n(n-1)^{7}-\left(\cdots \sum_{\substack{\text { Crees, agaiu }}}^{0}-\right.
$$

$$
=n(n-1)^{7}-\left(n(n-1)^{6}-n(n-1)^{5}\right)
$$

So $P_{G}(n)=n(n-1)^{5}\left[(n-1)^{2}-(n-1)+1\right]=n(n-1)^{5}\left(n^{2}-3 n+3\right)$. page 2

$$
\begin{aligned}
& P_{G}(n)=n(n-1)^{5}\left(n^{2}-3 n+3\right), \\
& \text { so } P_{G}(1)=0, \quad P_{G}(2)=2 \cdot 1 \cdot(4-6+3)=2 .
\end{aligned}
$$

(a) $\gamma(G)=2$.
(b) G can be colored in two ways using 2 colors.

$$
\operatorname{pag}_{3}
$$

$\# 2$
Let H be Is the dual of H edge-traceable?

\bar{G} has 4 vertices of odd Segue $\therefore \bar{G}$ is not edge-traceable.

