G a connected graph—
today we'll define three numbers associated to G:

\[\kappa(G) \] — a measure of vertex connectedness,

\[\lambda(G) \] — a measure of edge connectedness,

\[\delta(G) \] — max degree of a vertex.

How I remember which is which:
\(\lambda(G) \) is the minimum number of edges that one can remove from \(G \) to disconnect it.

Ex. If \(G \) has a bridge, \(\lambda(G) = 1 \).

Q: Can \(\lambda(G) = 0 \)? No, as \(G \) is connected.

Q: What is \(\lambda(G) \) for \(G = \bullet \):

Will define this as a special case to make theorems work.

\(\lambda(\bullet) = 0 \) seems right.

Page 2
Def: If G is a connected graph, a **cut-set** of G is a set $S \subseteq E(G)$ s.t.

- Removing S creates a disconnected graph; and
- If $S \neq S$, then removing S does not disconnect G.

Example:

$$\lambda(G) = 2$$

Some cut sets for G:
- $\{a, b\}$, $\{a, c\}$
- $\{b, g, d\}$ - disconnects.
- $\{b, d\}$ - also disconnects.
- not a cut-set
$\lambda(G) = 3$
Def:
A vertex-cut-set is a set of vertices such that removing the set disconnects G, but removing any proper subset does not disconnect G.

\times (means remove the vertex and all incident edges).

The minimum size of a vertex-cut-set is, by defn, $\kappa(G)$.
Q: What are the vertex-cut sets of H?

Ans: There are none.

Defn (special case): $\kappa(K_n) = n-1$.

$k(K) = 1$
HW, § 9, 1. 2(a)(c), 5(a)(d), 7(a)(c), 10(a)(b).

Due Friday, April 12