Lecture 20: Euler Trails (trail = no repeated edges)

Let G be a graph. An Euler trail is a trail that covers every edge.

Theorem: If G is connected, it has an Euler trail iff it has zero or two of odd degree.
How to find an Euler Trail if there are 2 odd vertices.

Start at an odd vertex, use Fleury's Algorithm (forced to end at the other odd vertex).

page 2
"Smaller" = fewer vertices.

One vertex.

Two vertices.

1. All loops on v.
2. Go to w.
3. All loops at w.
4. ...
pf of better Euler Thm:

\[G_1 = \text{"G plus } e^{"} \]

Previous Thm says \(\exists \) Euler Circuit for \(G_1 \). Remove \(e \) from the circuit, "get a Euler trail for \(G \)."
prove: Euler Theorem (First version) again. By induction on # of vertices:

\[n = k + 1\]
\[n = k\]
\[(\text{ok for } n = k) \& (\text{ok for } n = 2)\]
\[(\text{ok for } n = k + 1)\]
\[\Delta = \{v, w\} \]

\[n = k + 1 \text{ vertices} \]

a) \text{ Find a circuit here.}

b) \text{ If a graph here.}