Lecture 19 Euler Circuits

Thm: If G is connected and has no vertices of odd degree, then G has an Euler Circuit.

pf by induction?

Claim: Thm is true for all such G with n edges.

Base Case: $n=0$.

Path = "". ✔
Assume this true for $n = 1, \ldots, k-1$. Suppose G has $n = k$ edges, connected, no odd vertices. $G_1 = G \setminus \{e\}$, for some random edge. G_1 has $k-1$ edges, so then applies.

$G \quad \rightarrow \quad G_1$
How can I derive a "smaller" graph from G, and keep "connected", "no odd vertices!" subtracting " $\bullet\rightarrow\bullet$ " failed

Remove " $\bullet\rightarrow\bullet$

or C_k, \triangle
If G has no odd vertices,

then there is a disjoint union of circuits in G that contains each edge once.

pf: By strong induction on the number of edges.

$h=0$:

Done with zero cycles.
Assume that holds for graphs with \(n = 0, 1, \ldots, k-1 \) edges, \(k > 1 \).

Suppose we're given \(G \), has \(k \) edges and no odd vertices, \(k > 1 \), so pick an edge \(e \).

\(G \) contains: \(e \)

\[\text{loop case} \rightarrow (G - \{e\}) \text{ has} \]

Same components as \(G \).

By \(\text{\textcircled{1}} \), have circuits, disjoint, union including all edges. "Spleia" into a circuit.
H has \(v \), odd degree.

\(\# \) of odd vertices is even, always.

So \(\exists \) vertex of odd degree.

\(\therefore G \) has vertex of odd degree \(\Rightarrow \) \(G \) can't have a bridge. So \(e \) is in a cycle.
Now remove the cycle, call the remainder G. The purple circuits exist since \tilde{G} has fewer than k edges. Alternate blue and purple to finish off the component containing e. page 7