REVIEW #1

Problem 1. Find all partitions of \{0, 1, 2, 3\} into two sets, one of which is a singleton. Write out the associated equivalence relations as tables.

Problem 2. Find an example of a function

\[f : \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\} \]

such that \(f \circ f \circ f = \text{id} \) but \(f \circ f \circ f \) is not the identity function.

Problem 3. Let

\[A = \{(0, 0), (1, 2), (0, 2), (1, 1), (2, 2)\} \]

and define

\[(a, b) \preceq (c, d)\]

to mean

\[a \leq c \text{ and } b \leq d. \]

Draw the Hasse diagram associated to the partial order \(\preceq \).

Problem 4. Suppose \(\sim \) is the equivalence relation indicated by this table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) What is \(\overline{3} \)?
(b) What is \(\overline{10} \)?
(c) Is \(11 \in \overline{T} \)?

Problem 5. Let \(f \) be the invertible function indicated by this table.
(a) What is \(f \circ f \circ f(2)? \)
(b) What is \(f \circ f^{-1} \circ f(2)? \)
(c) Is \(f \) one-to-one?

Problem 6. It is not true that for all sets \(A, B \) and \(C \) we have the equation
\[
A \cap (B \setminus C) = B \setminus (A \cap C).
\]

(a) Find an example where this equation is true.
(b) Find an example where this equation is false.

Problem 7. Draw a Hasse diagram such that for the associated partial order there are two elements \(a \) and \(b \) that have at least one common upper bound but that have no least upper bound.

Problem 8. Is \(R \) transitive? Say why, of course.