HOMEWORK #2

Problem 1. Consider the partition
\[P = \{\{1, 3, 6, 7, 8, 9\}, \{2, 5\}, \{4\}, \{10\}\}. \]
Let \(\sim \) be the associated equivalence relation.
(a) What is 2?
(b) Is it true that 7 \(\sim \) 4?
(c) List 4 elements of \(A \) so that \(a \not\sim b \) for any distinct \(a \) and \(b \) in your list.

Problem 2. The following table describes an equivalence relation. Find the associated set of ordered pairs that is this relation.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Problem 3. There are 5 equivalence relations on the set \(\{0, 1, 2\} \). Find them all.

Problem 4. Here is a partition of \(\mathbb{N} \) into a bunch of finite sets:
\[\{\{1\}, \{2, 3\}, \{4, 5, 6, 7\}, \{8, 9, 10, 11, 12, 13, 14, 15\}, \ldots\} \]
(Each subset is twice as big as the one before, and contains consecutive integers.)
Let \(\sim \) be associated equivalence relation.
(a) What is \(\mathbb{T} \)?
(b) What is \(\mathbb{T'} \)?
(c) Is 4 \(\sim \) 4?
(d) Is 9 \(\sim \) 100?
(e) What is \(5 \cap \mathbb{T} \)?
(f) What is \(5 \cap \mathbb{T'} \)?
(g) What is \(5 \cap \mathbb{U} \)?

Problem 5. Give an example of a relation on three elements that is reflexive, symmetric and antisymmetric.