Problem 1. Show that the following pairs of sets are not equal by exhibiting an element of one that is not an element of the other.

(a)
\[A = \{1, 2\} \]
\[B = \{1, \{2\}\} \]

(b)
\[C = \mathcal{P}(\{1, 2\}) \]
\[D = \{\{1\}, \{2\}, \{1, 2\}\} \]

(c)
\[E = \{1, 2\} \times \{2, 3\} \]
\[F = \{3, 2\} \times \{2, 1\} \]

Problem 2. Let
\[A = \{1, 2, 4\} \]
\[B = \{1, 2, 5\} \]
List the elements of the following sets, without repeating any elements:

(a)
\[\{\{m, n\} | m \in A \text{ and } n \in B\} \]

(b)
\[\{(m, n) | m \in A \text{ and } n \in B\} \]

Problem 3. List every subset \(S \) of \(\{1, 2, 3, 4, 5\} \) for which
\[S \cap \{1, 3, 5\} \subseteq \{1\} \]

Problem 4. Number 28 of section 2.2.

Problem 5. True or false:

(a) \((1, 1) \in \{(1, 1), (1, 2), (2, 1)\} \cap \{(1, 2), (2, 1)\} \)

(b) \(\{1, 2\} \in \{(1, 1), (1, 2), (2, 1)\} \)

(c) \((1, 2) \in \{1, 2\} \times \{2, 3\} \).
Problem 6. Show that if

\[A \neq B \]

then

\[\mathcal{P}(A) \neq \mathcal{P}(B). \]