HOMEWORK #5

A list of primes can make life easier. I have found http://primes.utm.edu/lists/small/1000.txt to be accurate. Remind me to put a list of primes on the next midterm.

If the web is not available to you, recall you need to test \(n \) by seeing if it is divisible by the numbers up to \(\sqrt{n} \), but you skip any number you know is composite.

Memorizing a few primes helps:

\[2, 3, 5, 7, 11, 13, 17, 19, 23 \]

Knowing a few tests for divisibility makes life easier. For numbers given to you in base 10:

- \(n \) is divisible by 2 if the last digit is even.
- \(n \) is divisible by 3 if the sum of the digits is divisible by 3.
- \(n \) is divisible by 5 if the last digit is 0 or 5.
- \(n \) is divisible by 9 if the sum of digits is divisible by 9.
- \(n \) is divisible by 11 if the alternating sum of the digits is divisible by 1:

\[
11 \text{ divides } n = d_k d_{k-1} \cdots d_2 d_1 \iff 11 \text{ divides } d_k - d_{k-1} + \cdots \pm d_2 \mp d_1.
\]

Problem 1. Find another base where the last rule also works (where divisibility by \(11_b \) can be tested using the alternating sum of the digits. An informal explanation of why this works in base-\(b \) for your choice of \(b \) will be ok.

Problem 2. Solve for \(x \) and \(y \).

\[
x + y \equiv 5 \pmod{2801}
\]
\[
x - y \equiv 1 \pmod{2801}
\]

Problem 3. Find the smallest natural number \(x \) for which

\[
x \equiv 1 \pmod{417}
\]
\[
x \equiv 5 \pmod{10}
\]

Problem 4. Suppose we define two sequences \(G_n \) and \(H_n \) by

\[G_1 = 1, \ G_2 = 3, \]

and

\[G_n = G_{n-1} + G_{n-2} \quad (n \geq 3) \]

and

\[H_1 = 2, \ H_2 = 2, \]
and

\[H_n = H_{n-1} + H_{n-2} \quad (n \geq 3). \]

For which \(n \) is \(G_n \) less than or equal to \(H_n \)? (Prove your answer is correct. I suggest induction.)

Problem 5. Problem 6(c) of Section 5.1.

Problem 6. Problem 9(g) of Section 5.1.