1. Consider the Cauchy problem

\[u_t = Au_x, \quad u(x, 0) = f(x), \]

where \(A \in \mathbb{C}^{n \times n} \) is a constant matrix. Assume that all eigenvalues of \(A \) are real. Prove an estimate of the form

\[\|u(\cdot, t)\| \leq Ke^{\alpha t}\|f\|_{H^q} \quad \text{for} \quad t \geq 0 \]

for all \(f \in M_0 \). Here \(K \) and \(q \) are independent of \(f \). How is the best \(q \) related to the Jordan form of \(A \)?

2. Let \(S \in \mathbb{C}^{n \times n} \) denote a nonsingular matrix with

\[|S| \leq K_1 \quad \text{and} \quad |S^{-1}| \leq K_1. \]

For the Hermitian matrix \(H = S^*S \) prove an estimate of the form

\[\frac{1}{K_2} I \leq H \leq K_2 I. \]

The meaning of this estimate is

\[\frac{1}{K_2}|a|^2 \leq a^*Ha \leq K_2|a|^2 \quad \text{for all} \quad a \in \mathbb{C}^n. \]

3. Let

\[u_t = \sum_{j=1}^{N} A_j D_j u + B u \]

denote a strongly hyperbolic system as defined in class. Prove that the Cauchy problem for the system is well-posed.

4. Consider a first order constant coefficient system

\[u_t = \sum_{j=1}^{N} A_j D_j u \]

where \(A_j \in \mathbb{C}^{n \times n} \). Assume that there exists a vector \(k \in \mathbb{R}^N \) for which the matrix \(\sum_{j=1}^{N} k_j A_j \) has a non-real eigenvalue. Prove that the Cauchy problem for the system is not weakly well-posed. I.e., an estimate of the form

\[\|u(\cdot, t)\| \leq Ke^{\alpha t}\|f\|_{H^q} \quad \text{for} \quad t \geq 0 \]

with \(K, \alpha, q \) independent of \(f \in M_0 \) does not hold.