1) Let
\[f(z) = \int_0^z (1 + \zeta)^{-1/2}(1 - \zeta)^{-1/2} d\zeta . \]
Determine the image of the real line under the map
\[z \rightarrow f(z) . \]

Note: One has to be careful with the definition of the roots. Choose the root
\[g_1(\zeta) = (1 - \zeta)^{-1/2} \]
so that \(g_1(\zeta) > 0 \) for \(\zeta < 1 \) and so that the function \(g_1 \) is holomorphic in \(\mathbb{H} \) and continuous in \(\mathbb{H} \setminus \{1\} \). Similarly for
\[g_2(\zeta) = (1 + \zeta)^{-1/2} . \]

2) Let
\[f(z) = \int_1^z (\zeta + 1)^{-2/3}(\zeta - 1)^{-2/3} d\zeta . \]
Show that \(f \) maps the extended real line \((\mathbb{R} \cup \{\infty\}) \) onto a triangle. What kind of triangle?

3) Fix an angle \(\alpha \) with \(0 < \alpha < \pi \) and consider the function
\[f(z) = \int_0^z \zeta^{-(\pi - \alpha)/\pi} d\zeta . \]
a) Describe the image of the real line under the map \(z \rightarrow f(z) \).
 b) In this case it is not too difficult to describe the image of the open upper half-plane \(\mathbb{H} \) under \(f \). You could parametrize the straight line from 0 to \(z \) by
 \[\zeta(t) = zt, \quad 0 \leq t \leq 1 , \]
 for example. Describe the image of \(\mathbb{H} \) under the map \(f \).
 What do you obtain?

4) Let \(z_j = 2^j \) for \(j = 0, 1, 2, \ldots \) and let
\[U = \mathbb{C} \setminus \{z_0, z_1, z_2, \ldots\} . \]
Prove that the series
\[f(z) = \sum_{j=0}^{\infty} \left(\frac{2^j}{z - 2^j} + 1 \right) \]

converges normally in \(U \).

If \(f(z) \) a meromorphic function?