Midterm 2: Math 321 April 6, 2023, 9:30-10:45am

Problem	Points	Score	
1	20		
2	20		
3	20		
4	20		
5	20		
6	20		
Total	120		

Instructions

- Print your name below and sign the statement. Exams which lack these will not be graded.
- Show your work on each problem, presenting it in a neat and organized manner.
- Give the solution to each problem in the space provided. If you need more space to answer a problem, use the back of a page, making a note where the additional work can be found.
- You are allowed both sides of a single 8.5" x 11" sheet of paper for notes. Hand your note sheet in with your exam.

Please sign and date the following statement:

I have read the instructions and understand them. I agree to complete this exam without unauthorized assistance from any person, materials, or device.

Printed Name

Signature

Date

1. Let A be and $n \times k$ matrix and B a $k \times m$ matrix so that AB is a well-defined $n \times m$ matrix. Prove that if the columns of B are linearly dependent, then so are the columns of AB.

- 2. Determine if the given matrix A in each part is invertible.
 - If it is invertible, use an augmented matrix and row operations to find A^{-1} explicitly.
 - If it is not invertible, state the rank of A.

(a)
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 0 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$

(b) $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 3 \\ 1 & 2 & 3 \end{bmatrix}$

(a) Prove that if b ≠ 0, then the set of solutions to Ax = b is not a subspace.
(b) Prove that the subset of R³ consisting of vectors of the form

$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

such that $v_1 - 2v_2 + v_3 = 0$ defines a subspace of \mathbb{R}^3 .

4. Let A and B be the 3×4 matrices

$$A = \begin{bmatrix} 1 & -2 & 0 & -4 \\ 2 & -4 & 1 & -5 \\ -1 & 2 & 1 & 7 \end{bmatrix} \quad B = \begin{bmatrix} 1 & -2 & 0 & -4 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

It can be checked that A and B are row equivalent, though you do not need to do this.

- (a) Find a basis for null(A) and state the dimension of null(A).
- (b) Find a basis for col(A) and state the dimension of col(A).
- (c) Do the columns of A span \mathbb{R}^3 ? Justify your answer.

5. Expand the given set to form a basis for \mathbb{R}^3

ſ	[1]		2		
{	-2	,	1		ł
l	4		-2	J	

6. Suppose A is an $n \times m$ matrix whose column space is m-dimensional. Prove that the columns of A are linearly independent.