Midterm 2: Math 321
April 6, 2023, 9:30-10:45am

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
Total	120	

Instructions

- Print your name below and sign the statement. Exams which lack these will not be graded.
- Show your work on each problem, presenting it in a neat and organized manner.
- Give the solution to each problem in the space provided. If you need more space to answer a problem, use the back of a page, making a note where the additional work can be found.
- You are allowed both sides of a single $8.5 "$ x 11 " sheet of paper for notes. Hand your note sheet in with your exam.

Please sign and date the following statement:

I have read the instructions and understand them. I agree to complete this exam without unauthorized assistance from any person, materials, or device.

1. Let A be and $n \times k$ matrix and B a $k \times m$ matrix so that $A B$ is a well-defined $n \times m$ matrix. Prove that if the columns of B are linearly dependent, then so are the columns of $A B$.
2. Determine if the given matrix A in each part is invertible.

- If it is invertible, use an augmented matrix and row operations to find A^{-1} explicitly.
- If it is not invertible, state the rank of A.
(a) $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 0 & 1 \\ 3 & 1 & 1\end{array}\right]$
(b) $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 0 & 3 \\ 1 & 2 & 3\end{array}\right]$

3. (a) Prove that if $\mathbf{b} \neq \mathbf{0}$, then the set of solutions to $A \mathbf{x}=\mathbf{b}$ is not a subspace.
(b) Prove that the subset of \mathbb{R}^{3} consisting of vectors of the form

$$
\mathbf{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

such that $v_{1}-2 v_{2}+v_{3}=0$ defines a subspace of \mathbb{R}^{3}.
4. Let A and B be the 3×4 matrices

$$
A=\left[\begin{array}{rrrr}
1 & -2 & 0 & -4 \\
2 & -4 & 1 & -5 \\
-1 & 2 & 1 & 7
\end{array}\right] \quad B=\left[\begin{array}{rrrr}
1 & -2 & 0 & -4 \\
0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

It can be checked that A and B are row equivalent, though you do not need to do this.
(a) Find a basis for $\operatorname{null}(A)$ and state the dimension of $\operatorname{null}(A)$.
(b) Find a basis for $\operatorname{col}(A)$ and state the dimension of $\operatorname{col}(A)$.
(c) Do the columns of A span \mathbb{R}^{3} ? Justify your answer.
5. Expand the given set to form a basis for \mathbb{R}^{3}

$$
\left\{\left[\begin{array}{r}
1 \\
-2 \\
4
\end{array}\right],\left[\begin{array}{r}
2 \\
1 \\
-2
\end{array}\right]\right\}
$$

6. Suppose A is an $n \times m$ matrix whose column space is m-dimensional. Prove that the columns of A are linearly independent.
