Midterm 1: Math 321
February 23, 2023, 9:30-10:45am

| Problem | Points | Score |
| :---: | :---: | :---: |
| 1 | 20 |  |
| 2 | 20 |  |
| 3 | 20 |  |
| 4 | 20 |  |
| 5 | 20 |  |
| 6 | 20 |  |
| Total | 120 |  |

## Instructions

- Print your name below and sign the statement. Exams which lack these will not be graded.
- Be prepared to show your ID to the proctor when turning in the exam.
- Make sure that your work is shown in a neat and organized manner. If you need more space to answer a problem, use the back of a page, making a note where the additional work can be found.
- You are allowed both sides of a single $8.5 " \times 11 "$ sheet of paper for notes. Hand your note sheet in with your exam.


## Please sign and date the following statement:

I have read the instructions and understand them. I agree to complete this exam without unauthorized assistance from any person, materials, or device.
Printed Name Signature Date

1. Find all solutions, if any, to the linear system

$$
\begin{array}{r}
x_{2}+2 x_{3}=1 \\
x_{1}+3 x_{2}+2 x_{2}=2 \\
x_{1}+x_{2}-2 x_{3}=1
\end{array}
$$

Show your work.
2. Consider the matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right]
$$

(a) Transform $A$ to reduced echelon form.
(b) Do the columns of $A$ span $\mathbb{R}^{3}$ ? Explain your answer.
(c) Find all solutions to the homogeneous equation $A \mathbf{x}=\mathbf{0}$.
3. Given a vector $\mathbf{v}$ in $\mathbb{R}^{3}$, denote its entries as

$$
\mathbf{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

Also define the following vectors in $\mathbb{R}^{3}$

$$
\mathbf{u}_{1}=\left[\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right]
$$

Show that if $2 v_{1}+v_{2}+v_{3}=0$, then $\mathbf{v}$ is in the span of $\mathbf{u}_{1}, \mathbf{u}_{2}$.
4. Determine all values of $h$ for which the following vectors are linearly independent. Explain your answer:

$$
\left[\begin{array}{r}
1 \\
-2 \\
-2 \\
0
\end{array}\right],\left[\begin{array}{r}
0 \\
-1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{r}
1 \\
-4 \\
h \\
2
\end{array}\right] .
$$

5. Using minimal calculations, explain why the following sets of vectors are linearly dependent.
(a)

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
29 \\
32
\end{array}\right], \mathbf{w}=\left[\begin{array}{l}
172 \\
173
\end{array}\right]
$$

(b)

$$
\mathbf{u}=\left[\begin{array}{c}
0 \\
10 \\
2
\end{array}\right], \mathbf{v}=\left[\begin{array}{c}
55 \\
40 \\
2
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
55 \\
50 \\
4
\end{array}\right]
$$

Hint for (b): What is $\mathbf{u}+\mathbf{v}$ ?
6. Let $T(\mathbf{x})=A \mathbf{x}$ for the given matrix $A$. Determine if $T$ is one-to-one. Justify your answer.
(a)

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 9
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 365 & 97 \\
0 & 0 & \frac{1}{597}
\end{array}\right]
$$

Note: Part (b) can be solved without messy calculations.

