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a b s t r a c t

The time-average variance constant (TAVC) has been an important component in the study
of time series. Many real problems request a fast and recursive way in estimating TAVC. In
this paper we apply AR(1) prewhitening filter to the recursive algorithm byWu (2009b), so
that the memory complexity of order O(1) is maintained and the accuracy of the estimate
is improved. This is justified by both theoretical results and simulation studies.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The time-average variance constant (TAVC) plays an important role in many time series inference problems such as
unit root testing and statistical inference of the mean. Throughout the paper, we focus on a stationary time series {Xi}i∈Z
with mean µ = E(Xi) and finite variance. The TAVC typically has the representation of σ 2

=


k∈Z γ (k), where γ (k) =

cov(X0, Xk) is the covariance function at lag k. The TAVC is proportional to the spectral density function evaluated at the origin
by a constant and the estimation of the latter has been extensively studied in the literature. See for instance Stock (1994),
Song and Schmeiser (1995), Phillips and Xiao (1998), Politis et al. (1999), Bühlmann (2002), Lahiri (2003), Alexopoulos and
Goldsman (2004) and Jones et al. (2006).

In many applications, one has to sequentially update the estimate of σ 2 while the observations are being accumulated
one by one. For the traditional methods of estimating σ 2, the computation time and the memory required will increase for
each update of the estimate of σ as the sample size, say n, increases. This is prohibitive especially when multiple MCMC
chains are run simultaneously. Wu (2009) modified the batch mean approach into a recursive version without sacrificing
the convergence rate of O(n−1/3). Meanwhile, the memory complexity of each update is reduced from the traditional O(n)
to O(1).
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In this paper,we incorporate the prewhitening idea (Press and Tukey, 1956) intoWu (2009)’s approach in order to achieve
reduced mean squared error (MSE) for the estimation of σ 2. The benefit of prewhitening is that the resulting residuals are
less dependent than the original data and one can obtain more accurate estimate of the TAVC for the residuals due to larger
effective degrees of freedom.1

Weadopt the AR(1) prefilter in constructing recursive estimate of the TAVC. By this smallmodification, wewould achieve
substantial improvements on estimation efficiency under some circumstances. Theoretical conditions are given for deciding
if the prewhitening is needed or not. The rest of the paper is organized as follows. Section 2 provides the algorithms of
recursive estimation of TAVC. In Section 3, we derive the asymptotic properties of the proposed estimators. In Section 4,
we discuss efficiency comparisons between the proposed method andWu’s method in terms of both theoretical results and
simulation studies. Section 5 concludes the paper. All the proofs are omitted here and could be found in a longer version of
the paper.

2. Proposed algorithms

For notational convenience, we assume µ = 0 throughout the paper without loss of generality. All results in the paper
shall remain the same for any other values ofµ.We first propose an algorithm for estimating σ 2 through prewhiteningwhen
µ is known. Thenwe generalize it to the unknown case. Here are some frequently used notations throughout the paper: ak =

⌊ckp⌋; ti =


k∈N akIak≤i<ak+1 ; ρ = γ (1)/γ (0); γ̂n(k) = n−1n
i=|k|+1 XiXi−|k|; γ̃n(k) = n−1n

i=|k|+1(Xi − X̄n)(Xi−|k| − X̄n);
ρ̂n = γ̂n(1)/γ̂n(0); ρ̃n = γ̃n(1)/γ̃n(0); and vn =

n
i=1 li, where li = i − ti + 1.

2.1. When µ is known

To estimate σ 2, Wu (2009) proposed the statistic v−1
n
n

i=1(
i

j=ti
Xj)

2, which allows the recursive algorithm with the
memory complexity of O(1). One way of improving the accuracy of the estimation is to prewhiten the original sequence so
that the transformed sequence has weaker dependence and the corresponding estimation of TAVCwould be more accurate.
Here, we adopt the AR(1) model as the prefilter to produce a new sequence, i.e. ei = Xi − ρXi−1 with ρ = γ (1)/γ (0). Due
to the relationship σ 2

= σ 2
e /(1 − ρ)2, it is reasonable to estimate σ 2 by Vn/(vn(1 − ρ)2) when ρ is known, where

Vn =

n
i=1

W 2
i and Wi =

i
j=ti

(Xj − ρXj−1).

When ρ is unknown, one only need to plug in the estimate of ρ and hence σ 2 can be estimated by

σ̂ 2
n = V̂n/(vn(1 − ρ̂n)

2), (1)

where V̂n =
n

i=1 Ŵ
2
i,n and Ŵi,n =

i
j=ti

(Xj − ρ̂nXj−1). It can be shown that

V̂n =

n
i=1


i

j=ti

Xj

2

+ ρ̂2
n

n
i=1


i

j=ti

Xj−1

2

− 2ρ̂n

n
i=1


i

j=ti

Xj


i

j=ti

Xj−1


.

To simplify notations, let Sn,0 =
n

i=1 X
2
i , Sn,1 =

n
i=2 XiXi−1, Wi,0 =

i
j=ti

Xj, Wi,1 =
i

j=ti
Xj−1, Vn,0 =

n
i=1 W

2
i,0,

Vn,1 =
n

i=1 W
2
i,1, and Vn,2 =

n
i=1 Wi,0Wi,1. As a result, ρ̂n = Sn,1/Sn,0 and V̂n = Vn,0 + ρ̂2

nVn,1 − 2ρ̂nVn,2. Now σ̂ 2
n can be

calculated recursively by the following Algorithm.

Algorithm 1. At stage n, we store (kn, vn, Xn, Sn,0, Sn,1, ρ̂n,Wn,0,Wn,1, Vn,0, Vn,1, Vn,2). Note that tn = akn . When n = 1, the
vector is (1, 1, X1, X2

1 , 0, 0, X1, 0, X2
1 , 0, 0). At stage n + 1, we update the vector by

1. If n + 1 = a1+kn , let Wn+1,0 = Xn+1, Wn+1,1 = Xn and kn+1 = 1 + kn; Otherwise, let Wn+1,0 = Wn,0 + Xn+1, Wn+1,1 =

Wn,1 + Xn and kn+1 = kn.
2. Let Sn+1,0 = Sn,0 + X2

n+1, Sn+1,1 = Sn,1 + Xn+1Xn, Vn+1,0 = Vn,0 + W 2
n+1,0, Vn+1,1 = Vn,1 + W 2

n+1,1, Vn+1,2 = Vn,2 +

Wn+1,0Wn+1,1, and vn+1 = vn + (n + 2 − akn+1).
3. Let ρ̂n+1 = Sn+1,1/Sn+1,0.
4. Calculate V̂n+1 = Vn+1,0 + ρ̂2

n+1Vn+1,1 − 2ρ̂n+1Vn+1,2

Output: σ̂ 2
n+1 = V̂n+1/(vn+1(1 − ρ̂n+1)

2).

1 For example, suppose the residuals {ei}i∈Z are generated from {Xi}i∈Z by the mechanism of a(L)Xi = b(L)ei , where L is the lag operate and a(·) and
b(·) are polynomial functions so that their roots do not fall in the unit circle. It is well known that σ 2

= a(1)−2b(1)2σ 2
e , where σ 2

e is the TAVC of {ei}i∈Z . If
{Xi}i∈Z follows an ARMA model, {ei}i∈Z becomes the white noise sequence under the proper choice of a(·) and b(·). In the latter case, the estimation of σ 2

e
could be a lot more accurate than that of the original sequence.
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2.2. When µ is unknown

In this case, we have to centralize the data by the sample average and then apply Algorithm 1 to the centralized data.
Hence one can estimate σ 2 by

σ̃ 2
n = Ṽn/(vn(1 − ρ̃n)

2), (2)
where

Ṽn =

n
i=1

W̃ 2
i,n, W̃i,n =

i
j=ti

(Xj − X̄n − ρ̃n(Xj−1 − X̄n)). (3)

Eq. (3) can be rewritten as

Ṽn = Ṽ ∗

n + (1 − ρ̃n)
2X̄2

ndn − 2(1 − ρ̃n)X̄nUn, (4)

where ρ̃n =
n

i=2(Xi − X̄n)(Xi−1 − X̄n)/
n

i=1(Xi − X̄n)
2, Ṽ ∗

n =
n

i=1(
i

j=ti
(Xj − ρ̃nXj−1))

2, dn =
n

i=1 l
2
i and Un =n

i=1 li
i

j=ti
(Xj − ρ̃nXj−1). Note that Ṽ ∗

n is similar with V̂n except that the ρ̂n therein is replaced by ρ̃n. Also note that
X̄n+1 = (nX̄n + Xn+1)/(n + 1) and

ρ̃n =

n
i=2

XiXi−1 + X̄n(X1 + Xn) − (n + 1)X̄2
n

n
i=1

X2
i − nX̄2

n

.

We can update σ̃ 2
n recursively by the following Algorithm.

Algorithm 2. At stage n, we store (kn, vn, dn, X1, Xn, X̄n, Sn,0, Sn,1, ρ̃n,Wn,0,Wn,1, Vn,0, Vn,1, Vn,2,Un). Note that tn = akn .
When n = 1, the vector is (1, 1, 1, X1, X1, X1, X2

1 , 0, 0, X1, 0, X2
1 , 0, 0, X1). At stage n + 1, we update the vector by

1. If n + 1 = a1+kn , let Wn+1,0 = Xn+1, Wn+1,1 = Xn and kn+1 = 1 + kn; Otherwise, let Wn+1,0 = Wn,0 + Xn+1, Wn+1,1 =

Wn,1 + Xn and kn+1 = kn.
2. Let Sn+1,0 = Sn,0 + X2

n+1, Sn+1,1 = Sn,1 + Xn+1Xn, and X̄n+1 = (nX̄n + Xn+1)/(n + 1).
3. Let ρ̃n+1 = (Sn+1,1 + X̄n+1(X1 + Xn+1) − (n + 2)X̄2

n+1)/(Sn+1,0 − (n + 1)X̄2
n+1).

4. Let Vn+1,0 = Vn,0 + W 2
n+1,0, Vn+1,1 = Vn,1 + W 2

n+1,1, Vn+1,2 = Vn,2 + Wn+1,0Wn+1,1, and vn+1 = vn + (n + 2 − akn+1),
dn+1 = dn + (n + 2 − akn+1)

2.
5. Let Un+1 = Un + (n + 2 − akn+1)(Wn+1,0 − ρ̃n+1Wn+1,1) and calculate Ṽ ∗

n+1 = Vn+1,0 + ρ̃2
n+1Vn+1,1 − 2ρ̃n+1Vn+1,2.

6. Calculate Ṽn+1 = Ṽ ∗

n+1 + (1 − ρ̃n+1)
2X̄2

n+1dn+1 − 2(1 − ρ̃n+1)X̄n+1Un+1

Output: σ̃ 2
n+1 = Ṽn+1/(vn+1(1 − ρ̃n+1)

2).

To implement this algorithm, we have to decide the values of c and p in ak. As shown later, the optimal choice of p is
typically 3/2 and the value of c is determined by the dependence structure of {ei}i∈Z. The details are deferred to Section 4.

3. Asymptotical properties of the estimators

In this section, we shall study the asymptotic properties of σ̂ 2
n and σ̃ 2

n as defined by (1) and (2) respectively. Theorem 1
derives the asymptotic properties of Vn, which leads to Theorem 2 and Corollary 1 regarding the asymptotic properties of
σ̂n and σ̃n.

Define a∧b = min(a, b). A random variable ξ is said to be inLp(p > 0) if ∥ξ∥p := [E(|ξ |
p)]1/p < ∞, where ∥ξ∥ = ∥ξ∥2.

For two sequences {an} and {bn}, write an ∼ bn, if limn→∞ an/bn = 1; write an = o(bn) if limn→∞ an/bn = 0; write
an = O(bn) if lim supn→∞ an/bn < ∞; write an = oa.s(bn) if limn→∞ an/bn = 0 almost surely; write an ≍ bn or an = O(bn)
if there exists a constant c > 0, such that 1/c ≤ |an/bn| ≤ c for all large n.

Throughout the paper, we assume that {Xi} is a stationary causal process of the form
Xi = g(Fi), Fi = (. . . , εi−1, εi),

and {εi} are i.i.d. LetX ′

i = g(F ′

i ), whereF ′

i = (F−1, ε
′

0, ε1, . . . , εi) and ε′

i is an i.i.d. copy of εi. The quantity δα(i) = ∥Xi−X ′

i ∥α

is called the physical dependence measure by Wu (2005). Recall ei = Xi − ρXi−1 and define e′

i = X ′

i − ρX ′

i−1. Let
θα(i) := ∥ei − e′

i∥α ≤ 2δα(i), it can be shown that the following two conditions are equivalent
∞
i=0

δα(i) < ∞, (5)

∞
i=0

θα(i) < ∞ (6)
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in view of Xi =


k≥0 ρkei−k. Particularly, for the AR(1) model we have θα(i) = ∥ε0 − ε′

0∥α1i=0. Since ei is adapted to Fi and
E(ei) = 0, under mild condition of

∞
i=0

∥P0ei∥ < ∞, where Pi· = E(·|Fi) − E(·|Fi−1), (7)

we have the functional central limit theorem

1
√
n


i≤nt

ei, 0 ≤ t ≤ 1


d

→ {σeB(t), 0 ≤ t ≤ 1},

where B is the standard Brownian motion and σe = ∥


∞

i=0 P0ei∥ =


k∈Z E(e0ek) = (1 − ρ)2σ 2. Note that (7) is weaker
than (5). Now that σ 2

e is the TAVC for the time series {ei}. Wu (2009) proposed Vn/vn to estimate σ 2
e . The properties of Vn

are given in the following theorem, and its proof follows the same way as in Wu (2009).

Theorem 1. Let ak = ⌊ckp⌋, k ≥ 1, where c > 0 and p > 1 are constants.

(i) Assume that E(Xi) = 0, Xi ∈ Lα and (6) holds for some α ∈ (2, 4], we have

∥Vn − E(Vn)∥α/2 = O(nτ ),

max
n≤N

|Vn − E(Vn)|


α/2

= O(Nτ logN),

where τ = 2/α + 3/2 − 3/(2p).
(ii) Assume that E(Xi) = 0, Xi ∈ Lα and (6) holds for some α > 4, we have

∥Vn − E(Vn)∥α/2 = O(n2−3/(2p)),

max
n≤N

|Vn − E(Vn)|


α/2

= O(N2−3/(2p)).

(iii) Assume that E(Xi) = 0, and
∞
i=0

∥P0ei∥α < ∞, (8)

for α > 4, we have

lim
n→∞

∥Vn − E(Vn)∥

n2−3/(2p)
=

σ 2
e p

2c3/(2p)
√
12p − 9

.

(iv) Assume that EXi = 0, and for some q ∈ (0, 1] either (a)
∞
k=0

kq∥P0ek∥ < ∞ (9)

or (b)


∞

k=0 ∥P0Xk∥ < ∞ and

∞
k=0

kq∥P0(ek − ρek+1)∥ < ∞, (10)

are satisfied, we have

E(Vn) − vn(1 − ρ)2σ 2
= O(n1+(1−q)(1−1/p)).

Lemma 1 indicates that the magnitude of V̂n −Vn and Ṽn −Vn are both negligible compared to that of Vn − vn(1−ρ)2σ 2.
Hence the almost sure bounds of σ̂ 2

− σ 2 and σ̃ 2
− σ 2 could be resorted to Theorem 1.

Lemma 1. Assume p > 1, E(Xi) = 0, Xi ∈ Lα , and (5) holds with α ≥ 4. (i) For 1 < β < α, let β ′
= 2 ∧ β , then we havemax

k≤n
|V̂k − Vk|


β/4

= O(n3/2−1/pn(1−1/p)(2/β ′
−1)).

(ii) If 4/3 ≤ β < α and the conditions of Theorem 1(iv) hold, we have

∥V̂n/vn − (1 − ρ)2σ 2
∥β/4 = O(n−φ(p)), (11)

where φ(p) = (2p)−1
∧ q(1 − 1/p).
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As will be shown later, (11) plays the critical role in determining the deviation of σ̂ 2
n and σ̃ 2

n from σ 2. It can be shown
easily that φ(p) reaches its maximum of q/(2q + 1) at p = 1 + (2q)−1. By imposing the latter condition, we derive the
following results regarding asymptotic properties of σ̂n and σ̃n.

Theorem 2. Suppose E(Xi) = 0, (9) holds with q ∈ (0, 1], and p = 1 + (2q)−1.

(i) Assume Xi ∈ Lα and (5) holds with α > 4, then we have

σ̂ 2
n − σ 2

= oa.s.(n−q/(2q+1) log n). (12)

(ii) Assume Xi ∈ L4 and (5) holds with α = 4, then we have

σ̂ 2
n − σ 2

= oa.s.(n−q/(2q+1) log2+ϵ n) (13)

for any small ϵ > 0.

Corollary 1. Suppose E(Xi) = 0, (9) holds with q ∈ (0, 1], and p = 1 + (2q)−1.

(i) Assume Xi ∈ Lα and (5) holds with α > 4, then we have

σ̃ 2
n − σ 2

= oa.s.(n−q/(2q+1) log n). (14)

(ii) Assume Xi ∈ L4 and (5) holds with α = 4, then we have

σ̃ 2
n − σ 2

= oa.s.(n−q/(2q+1) log2+ϵ n) (15)

for any small ϵ > 0.
(iii) Assume Xi ∈ Lα and (5) holds with α ≥ 4, then we have

∥Ṽn/vn − (1 − ρ)2σ 2
∥β/4 = O(n−q/(2q+1)) (16)

when 4/3 ≤ β < α.

4. The comparison of efficiencies

Assume that (8) holds with α > 8 and (9) holds with q = 1. Theorem 2 suggests optimal p = 3/2 in the sequence
ak = ⌊ckp⌋. Let Sn =

n
i=1 ei, η = 2


∞

k=1 kγ (k), and ηe = 2


∞

k=1 kE(e0ek). As l → ∞, we have

lσ 2
e − E(S2l ) = ηe + o(1).

Following the proof of Lemma 1 and the arguments in Section 4 of Wu (2009), we have

∥Ṽn/vn − σ 2
e ∥

2
∼ ∥Vn/vn − σ 2

e ∥
2

∼


σ 4
e
16c2/3

9
+ η2 256

81c4/3


n−2/3.

In minimizing the MSE, we choose c = 4
√
2|ηe|/(3σ 2

e ) so that

∥Ṽn/vn − σ 2
e ∥

2
∼

214/3

35/3
η2/3
e σ 8/3

e n−2/3. (17)

By direct calculations we have

σ̃ 2
n − σ 2

=
∆n

(1 − ρ̃n)2
,

where ∆n = Ṽn/vn − σ 2
e + (2 − ρ − ρ̃n)(ρ̃n − ρ)σ 2. By Proposition 1 and (17) we have

∥∆n∥
2

∼
214/3

35/3
η2/3
e σ 8/3

e n−2/3. (18)

Let σ̌ 2 be the Wu’s estimator of σ 2.

Theorem 3. Suppose E(Xi) = 0, (9) holds with q ∈ (0, 1], and p = 1 + 1/2q.

(i) Assume Xi ∈ Lα , and (5) holds with α > 40.

∥σ̃ 2
n − σ 2

∥β/20 −
∥∆n∥β/20

(1 − ρ)2
= o(n−1/3) (19)

for 40 ≤ β < α.
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(ii) Assume Xi ∈ Lα , and (5) holds with α > 40. We have

∥σ̃ 2
n − σ 2

∥
2

∥σ̌ 2
n − σ 2∥2

→


1 −

2γ (1)
(1 − ρ)2η

2/3

:= λ. (20)

To estimate c , we can refer to Algorithm 3 in Wu (2009) except that γ̂ (k) therein should be replaced by an estimate of
E(e0ek) = (1 + ρ2)γ (k) − ρ(γ (k + 1) + γ (k − 1)). Therefore, we could substitute ρ and γ (k) by their estimates based on
a small portion of the initial data. Since λ < 1 if and only if 2γ (1)/η > 0, the proposed algorithm here would outperform
Wu’s algorithm whenever γ (1) ≠ 0 and

k≥2

kγ (k)/γ (1) > −1.

4.1. ARMA model

Consider ARMA(p̃, q) model

a(L)Xi = b(L)εi, (21)

where a(·) and b(·) are polynomials of orders p̃ and q respectively. Suppose a(z) =
p0

i=1(1 − riz)mi with
p0

i=1 mi = p̃ and
|ri| < 1. In the sequel, we will discuss the calculation of λ for the case of p̃ > q. No extra difficulty is needed to deal with
the case of p̃ ≤ q. From Brockwell and Davis (1991), the autocovariance function has the representation of

γ (k) =

p0
i=1

mi−1
j=0

dijkjrki , k ≥ 0, (22)

where dij could be found by solving the system of linear equations (22) for k = 0, 1, . . . , p − 1. See Brockwell and Davis
(1991) or Karanasos (1998) for details. Define Ξi(r) =


∞

k=1 k
irk, then Ξ0(r) = r/(1− r) and Ξi(r), i ≥ 1 could be derived

recursively by the relationΞi+1(r) = rΞ ′

i (r), i ≥ 0. For example, we haveΞ1(r) = r/(1−r)2 andΞ2(r) = (r2+r)/(1−r)3.
For model (21) we have

2γ (1)
(1 − ρ)2η

=

p0
i=1

mi−1
j=0

dijri/(1 − ρ)2

p0
i=1

mi−1
j=0

dijΞj+1(ri)

and ρ =

p0
i=1

mi−1
j=0

dijri

p0
i=1

di0

.

If all the ri’s are distinct, these two equations reduce to

2γ (1)
(1 − ρ)2η

=

p̃
i=1

diri/(1 − ρ)2

p̃
i=1

diri/(1 − ri)2
and ρ =

p̃
i=1

diri

p̃
i=1

di

(23)

with the convention of di = di0.
Simulation studies are carried out for three different examples of Model (21) and the results are displayed in Figs. 1–3.

In all these three examples, we adopted σ 2
ε = 1, and the value of λ is calculated by (23). The black line therein is associated

with Wu’s estimator and the red line is associated with the proposed estimator. Figs. 1 and 2 verify that when λ < 1 the
proposed method outperforms Wu’s. The main reason of the smaller MSE is due to the reduced bias by introducing the
prewhitening. On the other hand, Fig. 3 shows that when λ > 1 the prewhitening is not recommended.

5. Conclusions

This paper studies a prewhitened version of Wu’s algorithm for estimating the TAVC in a recursive way. Asymptotic
properties of the estimate is derived for a general causal stationary process and simulation studies are carried out for both
linear and nonlinear time seriesmodels. Herewe adopt the simplest prefilter, i.e. theAR(1)model,which achieves significant
improvements on the estimation efficiency whenever γ (1) ≠ 0 and


k≥2 kγ (k)/γ (1) > −1. In practice, one may keep

two lines of updating algorithms simultaneously in the initial stage and then choose one from them according to the latter
condition. The simple form of AR(1) facilitates the construction and implementation of the recursive estimation of TAVC
with the memory complexity of O(1).
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Fig. 1. λ ≈ 0.4150 for ARMA Model with a(z) = (1 − 0.8z)(1 + 0.05z)(1 − 0.02z) and b(z) = 1 + 0.1z. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 2. λ ≈ 0.2220 for ARMA Model with a(z) = (1 + 0.9z)(1 + 0.8z)(1 + 0.5z)(1 − 0.2z) and b(z) = 1 + 0.9z + 0.8z2 + 0.8z3 . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. λ ≈ 2.9947 for ARMA Model with a(z) = (1 − 0.8z)(1 + 0.5z)(1 − 0.2z) and b(z) = 1 + 0.9z + 0.8z2 . (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Appendix

Proposition 1. (i) Assume E(Xi) = 0, Xi ∈ Lα and (5) holds with α > 2. For 0 < β < α, the following sequences are all
uniformly integrable:

{[n1/2(γ̂n(k) − γ (k))]β/2, n ≥ 1}
{[n1/2(ρ̂n(k) − ρ(k))]β/2, n ≥ 1}
{[n1/2(γ̃n(k) − γ (k))]β/2, n ≥ 1}
{[n1/2(ρ̃n(k) − ρ(k))]β/2, n ≥ 1}.

(ii) Assume E(Xi) = 0, Xi ∈ L4 and (5) holds with α = 4, we have
√
n(ρ̂n − ρ)

d
→ N(0, σ 2

ρ ),

√
n(ρ̃n − ρ)

d
→ N(0, σ 2

ρ ),

where σ 2
ρ = ∥


∞

i=0 P0Xiẽi∥2/γ (0)2 and ẽi = Xi−1 − ρXi.
(iii) Assume E(Xi) = 0, Xi ∈ Lα and (5) holds with α ≥ 4. Then for 0 < β < α

∥
√
n(ρ̂n − ρ)∥β/2 → ∥σρG∥β/2,

∥
√
n(ρ̃n − ρ)∥β/2 → ∥σρG∥β/2,

where σρ is as defined in (ii) and G stands for a standard normal distribution.

Proposition 2. If E(Xi) = 0, Xi ∈ L4 and (5) holds with α = 4, we have

γ̂n(k) − γ (k) = oa.s.(n−1/2 log2 n),
ρ̂n(k) − ρ(k) = oa.s.(n−1/2 log2 n),
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γ̃n(k) − γ (k) = oa.s.(n−1/2 log2 n), (24)

ρ̃n(k) − ρ(k) = oa.s.(n−1/2 log2 n). (25)
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