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Abstract

In survey data, it is common that variance is large compared to bias. In

this research, we propose slightly biased variance estimators by multiplying a

constant c between 0 and 1, which are determined by minimizing the mean

squared error (MSE) of c × estimator of the variance. This research is an

extension of work by Kourouklis (2012) to the field of survey sampling. Simulation

studies show that the adjusted variance estimators perform very well in regarding

MSE compared to the regular variance estimator for simple random and stratified

random samples.
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1 Introduction

Consider a random sampleX1, X2, · · · , Xn from a population with distribution function

F ∈ F . Assume that Xi has finite fourth moment. In general, the population

variance σ2 is estimated by the sample variance s2 =
∑n

i=1(Xi − X̄)2/(n− 1). Many

researchers believe that there are estimators of the form cs2 (where c is a constant

between 0 and 1) that have smaller MSE than the sample variance s2. These work

include Stein (1964), Brown (1968), Brewster and Zidek (1974), Strawderman (1974),

Maruyama (1998), Yatracos (2005) and Maruyama and Strawderman (2006). Kourouklis

(2012) proposed a variance estimator c1s
2 and showed that this estimator has the

smallest MSE among the estimators of the form cs2.

In this research, we extend Kourouklis (2012)’s work to survey data. A survey

design usually involves stratification and clustering, which complicates the variance

estimation. In addition, survey data is associated with huge variability since data is

collected across the nation or from a large area. An adjusted variance estimator will

decrease the variance, therefore, improve the confidence intervals drastically.

This research is organized as follows: section 2 introduces notation in a general

survey frame with simple random sample without replacement (SRS) and stratified

random sample design; section 3 proposes the adjusted variance estimator which

has the smallest MSE for stratified random samples; section 4 performs simulation

comparisons among the estimators; and section 5 gives conclusions of the research.
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2 Notation

Let U = {1, 2, · · ·N} be the index set of the finite population with size N , and

y1, y2, · · · , yN be the values of the character of the sampling units in the population.

Let ȳU be the population mean: ȳU =
∑N

i=1 yi/N , and S2 be the population variance:

S2 =
∑N

i=1(yi − ȳU)
2/(N − 1). Also let µ2 =

∑N
i=1(yi − ȳU)

2/N and µ4 =
∑N

i=1(yi − ȳU)
4/N

be the centralized second and fourth moments respectively. At the sample S level,

let n be the sample size. Sample mean ȳ and sample variance s2 are defined as

ȳ =
∑

i∈S yi/n, and s2 =
∑n

i=1(yi − ȳ)2/(n− 1).

Under an SRS, E(ȳ) = ȳU , and

Var(ȳ) =
(
1− n

N

) S2

n
, (1)

where (1− n/N) is called the finite population correction.

In a stratified random sample, population with size N is divided into H non-

overlapping strata with size Nh, h = 1, 2, · · · , H, such that N =
∑H

h=1NH . Let yhj be

the value of the character for the jth sampling unit within stratum h. Let ȳhU be the

population mean of stratum h with ȳhU =
∑Nh

j=1 yhj/Nh, and S2
h be the population

variance with S2
h =

∑Nh

j=1(yhj − ȳhU)
2/(Nh − 1). Population mean ȳU can also be

written as a weighted average of the stratum means such as ȳU =
∑H

h=1NhȳhU/N .

Within each stratum h, an SRS with size nh is taken independently. Assume that

nh ≥ 2 throughout the paper, and
∑H

h=1 nh = n. Let Sh be the set of nh units in the

SRS within stratum h. Stratum sample mean ȳh and sample variance s2h are defined

as ȳh =
∑

j∈Sh
yhj/nh and s2h =

∑
j∈Sh

(yhj − ȳh)
2/(nh − 1). An unbiased estimator of
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the population mean ȳU is:

ȳstr =
H∑

h=1

Nhȳh
N

. (2)

By equation (1) and indpedent sampling within each stratum, variance of ȳstr is

Var(ȳstr) =
H∑

h=1

(
1− nh

Nh

)(
Nh

N

)2
S2
h

nh

, (3)

and is estimated by

V̂ar(ȳstr) =
H∑

h=1

(
1− nh

Nh

)(
Nh

N

)2
s2h
nh

. (4)

3 Proposed adjusted variance estimator in a stratified

random sample

Estimating population mean and total are two main topics in survey sampling. In this

section, we first propose an adjusted variance estimator of the mean that minimizes

MSE under an SRS setting. Next, we extend the estimator to a stratified random

sample. Last, we discuss how to estimate the optimal value c in practice.

3.1 Lemma and Theorem

In an SRS, we adjust the sample variance s2 by cs2, 0 < c < 1, where c is determined

by minimizing the MSE of cs2. This is equivalent to minimize MSE of V̂ar(ȳ). We

state the result as the following lemma and give a brief proof.
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Lemma 1. For a size n SRS selected from a population with size N , the optimal

value c that minimizes MSE(cs2) is

csrs = S4/E(s4), (5)

where

E(s4) =
n2

(n− 1)2
(aNµ4 + bN2µ2

2), (6)

with

a =
e1 − e2
n2

− 2(e1 − 3e2 + 2e3)

n3
+

e1 − 7e2 + 12e3 − 6e4
n4

,

b =
e2
n2

− 2(e2 − e3)

n3
+

3(e2 − 2e3 + e4)

n4
,

e1 = n/N, e2 =
n(n− 1)

N(N − 1)
, e3 =

n(n− 1)(n− 2)

N(N − 1)(N − 2)
, e4 =

n(n− 1)(n− 2)(n− 3)

N(N − 1)(N − 2)(N − 3)
,

and µ4 and µ2 are the centralized moments defined in Section 2.

Proof.

MSE(cs2) = E(cs2 − S2)2

= E(c2s4)− 2E(cs2S2) + S4

= c2E(s4)− 2cS4 + S4

Let g(c) = c2E(s4)− 2cS4 + S4. By setting g′(c) = 0, and using the fact that g′′(c) =

2E(s4) > 0, the optimal value of c that minimizes MSE(cs2) is csrs = S4/E(s4).

The remaining problem is to find E(s4) under an SRS. Using the fact that V (ȳ) =

(1−n/N)S2/n, and following a similar argument as that of section 2a.10 by Sukhatme

(1984), we obtain E(s4) as in equation (6).
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We now extend the adjusted variance estiamtor csrss
2 in an SRS to a stratified

random sample, The following theorem gives the result.

Theorem 1. In a stratified random sample, population is divided into H non-overlapping

strata, and an SRS is taken independently from each stratum. Let Nh and nh be the

population and sample size, and S2
h and s2h be the population and sample variance

within stratum h as defined in section 2. The optimal value of c that minimizes

MSE(cV̂ar(ȳstr)) is:

cstr =
(
∑H

h=1 khS
2
h)

2∑H
h=1 k

2
hE(s4h) +

∑H
i=1

∑H
j=1,j ̸=i kikjS

2
i S

2
j

, (7)

where E(s4h) can be derived by equation (6) by taking an SRS of size nh from stratum

h, and kh = (1− nh/Nh)(Nh/N)2/nh.

Proof. By equation (2), ȳstr =
∑H

h=1 Nhȳh/N . Recall equation (4) gives estimator of

V ar(ȳstr) as

V̂ar(ȳstr) =
H∑

h=1

(
1− nh

Nh

)(
Nh

N

)2
s2h
nh

,

which can be written as V̂ar(ȳstr) =
∑H

h=1 khs
2
h with expected value of

∑H
h=1 khS

2
h.

Now we want to find a constant c, such that MSE of cV̂ar(ȳstr) reaches the minimum.
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After some algebra,

E
{
(cV̂ar(ȳstr)− Var(ȳstr))

2
}

= E


(

H∑
h=1

khcs
2
h −

H∑
h=1

khS
2
h

)2


=
H∑

h=1

k2
h(c

2E(s4h)− 2cS4
h + S4

h) +
H∑
i=1

H∑
j=1,j ̸=i

kikj(c− 1)2S2
i S

2
j

= h(c)

Set h′(c) = 0, the local extreme value is obtained at

cstr =
(
∑H

h=1 khS
2
h)

2∑H
h=1 k

2
hE(s4h) +

∑H
i=1

∑H
j=1,j ̸=i kikjS

2
i S

2
j

, (8)

where E(s4h) can be derived by equation (6). Notice that h′′(c) =
∑H

h=1 2k
2
hE(s4h) +∑H

i=1

∑H
j=1,j ̸=i kikjS

2
i S

2
j > 0. cstr is the optimal value of c that minimizes MSE(cV̂ar(ȳstr)).

3.2 Estimating csrs and cstr

In practice, c needs to be estimated using a larger survey or using sample information.

We can use (n − 1)s2/n to estimate µ2. But estimating the fourth moment µ4 is

challenging. Some recent estimators of the fourth moment are not unbiased, or are

based on h-statistics and U -statistics (Heffernan, 1997), which can be computationally

expensive. Espejo, Pineda, and Nadarajah (2013) proposed estimating the fourth

population central moment under distribution-free setting, which involves variance

and covariance among the lower sample moments.
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Most practitioners may not have the mathematical and statistical background to

understand or use the general estimators given in literature. Assume that an SRS

or a stratified random sample are with large size, and that the selected sample is

representative of the finite population and estimation bias is small. We then use the

fourth sample moment and plugin method to estimate the optimal values of csrs and

cstr as follows.

ĉsrs = s4/Ê(s4), (9)

where

Ê(s4) =
n2

(n− 1)2
(aNµ̂4 + bN2µ̂2

2), (10)

where µ̂4 =
∑n

i=1(yi − ȳ)4/n, µ̂2 =
∑n

i=1(yi − ȳ)2/n, and a and b are defined as in

section 3. Similarly, extending SRS to a stratified random sample, we have

ĉstr =
(
∑H

h=1 khs
2
h)

2∑H
h=1 k

2
hÊ(s4h) +

∑H
i=1

∑H
j=1,j ̸=i kikjs

2
i s

2
j

, (11)

where Ê(s4h) can be derived using equation (10) when an SRS of size nh is taken from

stratum h, and kh = (1− nh/Nh)(Nh/N)2/nh.

4 Simulation studies

In this section, we perform a simulation study to evaluate performance of the proposed

adjusted variance estimator. The constant c can be calculated using population data

agpop.csv by equations (5) and (8), or estimated using samples by equations (9)

and (11). We compare bias, variance and MSE of the adjusted variance estimators:
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c·variance estimator (named Estimator 2 thereafter) and ĉ·variance estimator (named

Estimator 3 thereafter), with those of regular variance estimator (named Estimator

1 thereafter) under the settings of SRS and stratified random samples.

4.1 Simulation set up

The population data we consider in the simulation is agpop.csv, which is available

from the textbook (Lohr, 2010) supplementary material. The U.S. government conducts

a census of agriculture every five years, collecting data on all farms in the 50 states.

The census of agriculture provides data agpop.csv on number of farms, total acreage

devoted to farms (acres92 is the total acreage devoted to farms in 1992 and is the

variable of interest in the study), farm size, yield of different crops, and a wide variety

of other agriculture measures for N = 3078 counties and county-equivalents in the

United States. These 3078 counties are divided into four regions (strata) with stratum

size Nh: North Central (NC, stratum 1, N1 = 1054,), North East (NE, stratum 2,

N2 = 220), South (S, stratum 3, N3 = 1382) and West (W, stratum 4, N4 = 422).

Simulation does L = 100, 000 times for each setting. Each time, we draw a

sample from the population data agpop.csv using either SRS with sample size

n = 300 or stratified proportional allocated random sample with (n1, n2, n3, n4) =

(103, 21, 135, 41). In a general notation, let θ̂ be an estimator of θ. Assume θ̂(i)

represents the estimator of θ from the ith sample, i = 1, · · · , L. The Monte Carlo

mean EMC , Monte Carlo bias BMC , Monte Carlo variance VMC , and Monte Carlo
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MSE are given by the following formulas

EMC{θ̂} = L−1

L∑
i=1

θ̂(i), (12)

BMC{θ̂} = EMC{θ̂} − θ, (13)

VarMC{θ̂} = L−1

L∑
m=1

[θ̂(i) − EMC{θ̂}]2, (14)

and the main criterion for determining efficiency: Monte Carlo MSE is defined by

MSEMC{θ̂} = L−1

L∑
i=1

{θ̂(i) − θ}2. (15)

True mean ȳU is the average of yi’s from the population. For SRS, true variance

of ȳ is calculated by Var(ȳ) = (1−n/N)S2/n (equation (1)). For a stratified random

sample, variance of ȳstr is Var(ȳstr) =
∑H

h=1 khS
2
h (equation (3)). The unajusted

variance estimators of Var(ȳ) and Var(ȳstr) from the ith sample are V̂ar
(i)
(ȳ) = (1−

n/N)s2/n and V̂ar
(i)
(ȳstr) =

∑H
h=1 khs

2
h respectively.

Optimal values of csrs and cstr are calculated by equations (5) and (8) using

population data agpop.csv, and are estimated by averages of the L estimates ĉ
(i)
srs

and ĉ
(i)
str from the ith sample using equations (9) and (11). The ajusted variance

estimates of Var(ȳ) and Var(ȳstr) from the ith sample are csrsV̂ar
(i)
(ȳ) , cstrV̂ar

(i)
(ȳstr)

or ĉsrsV̂ar
(i)
(ȳ) , ĉstrV̂ar

(i)
(ȳstr).

4.2 Simulation results

Table 1 gives simulation results under SRS and stratified random sampling settings.

Bias, variance and MSE are calculated by equations (12), (13), (14) and (15). Note
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that using population data, we have V (ȳ) = 542599828 and Var(ȳstr) = 446220740.

Based on this large scale, bias, variance and MSE of V̂ar(ȳ) are all huge.

Table 1 shows that under SRS and stratified random samples: (1) bias of Estimators

2 and 3 are both larger than that of Estimator 1, since Estimator 1 is an unbiased;

(2) the trade-off of biased estimators are smaller variance of Estimators 2 and 3

compared to that of Estimator 1; (3) the overall measurement MSE of Estimators

2 and 3 are both smaller than that of Estimator 1. For example, under SRS, the

percentage of MSE reduction by Estimator 2 (defined as [MSE of Estimator 1 −

MSE of Estimator 2]/MSE of Estimator 1) is (4.731e + 16 − 4.076e + 16)/(4.731e +

16) = 13.8%, and percentage of MSE reduction by Estimator 3 (defined as [MSE of Estimator 1−

MSE of Estimator 3]/MSE of Estimator 1) is (4.731e + 16 − 3.156e + 16)/(4.731e +

16) = 33.3% . For stratified random sample, the percentage of MSE reduction by

Estimator 2 is 15.1%, and by Estiamtor 3 is 32.7%.

As the percentage of MSE reduction by Estimator 3 is much smaller than that of

Estimator 2, we want to take a closer look of Estimator 3. Under SRS, c = 0.8606,

and ĉsrs = 0.9196 with standard error of 0.0592. Under stratified SRS, cstr = 0.8538

and ĉstr = 0.9440 with standard error of 0.0588. All bias, variance and MSE of

Estimator 3 are smaller than those of Estimator 2 under the same setting. Figure 1

shows the histogram of ĉ from the L = 100, 000 simulations under SRS setting. This

bimodal histogram shows one peak at 0.85 and another one at 0.95, resulting in an

estimate of ĉsrs = 0.9196.
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Table 1: Simulation Results under SRS and stratified random sample settings (variable of interest

is acres92 ). Estimators 1, 2, and 3 are variance estimators of mean that are unadjusted, adjusted

by c, and adjusted by ĉ respectively

Sampling SRS Stratified random sampling

method

Estimator 1 2 3 1 2 3

c na 0.8606 na na 0.8538 na

ĉ na na 0.9196 na na 0.9440

Bias 6.876e+03 -7.564e+07 -5.315e+07 1.1490e+06 -6.4230e+07 -3.2259e+07

Variance 4.731e+16 3.504e+16 2.874e+16 3.4425e+16 2.5098e+16 2.2128e+16

MSE 4.731e+16 4.076e+16 3.156e+16 3.4426e+16 2.9224e+16 2.3169e+16

Figure 1: Histogram plot of ĉsrs from the 100,000 simulations
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Figure 2 shows the sample variance s2(i) versus ĉ
(i)
srs from the ith simulation. Unlike

Estimator 2 with a constant adjustment c, ĉ seems like a dymamic adjustment with

large ĉ associated with small s2 and small ĉ associated with large s2. This makes ĉs2(i)

tend to get closer to the true value S2 and to get closer to each other. Therefore,

bias, variance and MSE of Estimator 3 are smaller than those of Estimator 2.

Figure 2: Sample variance versus ĉsrs from the 100,000 simulations

5 Conclusions and future study

In this research, we extended Kourouklis (2012)’s work to SRS and stratified random

samples. Theoretically, the proposed variance Estimator 2 adjusted by csrs (for SRS)

and cstr (for stratified samples) has the smallest MSE among the estimators of the
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form c × (variance estimator). In practice, we use sample quantities to estimate the

constant c and propose Estimator 3 that is adjusted by ĉsrs or ĉstr. Simulation studies

show that the overall measurement MSE of Estimators 2 and 3 are both smaller

than that of Estimator 1 (unadjusted estimator). In addtion, ĉ acts like dynamic

adjustment with large/small ĉ associated with small/large variance estimates. As a

result, bias, variance and MSE of Estimator 3 are smaller than those of Estimator

2. In practice, we suggest using Estimator 3 to adjust variance estiamtors of mean

and total in SRS and stratified random samples as they produce narrower confidence

intervals. Future research may extend the adjusted variance estimator to complex

surveys such as a two stage stratified cluster survey.
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