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In this article, we extend smoothing splines to model the regression mean structure when data are sampled
through a complex survey. Smoothing splines are evaluated both with and without sample weights, and are
compared with local linear estimator. Simulation studies find that nonparametric estimators perform better
when sample weights are incorporated, rather than being treated as if iid. They also find that smoothing
splines perform better than local linear estimator through completely data-driven bandwidth selection
methods.

Keywords: complex surveys; local liner estimator; nonparametric regression; simulations; smoothing
splines

1. Introduction

Consider the general nonparametric regression model

yi = μ(ti) + εi, i = 1, 2, . . . , n, (1)

where {εi}n
i=1 is a sequence of independent, identically distributed random variables with E(εi) = 0

and E(ε2
i ) = σ 2, μ(·) is an unknown smooth regression curve to be estimated. Without loss of

generality, we take ti ∈ [0, 1], i = 1, 2, . . . , n and for simplicity we assume that 0 < t1 < · · · <

tn < 1.
A complex survey may include strata and clusters at the design stage, in which the iid assumption

in Equation (1) is contradicted and standard nonparametric estimation methods cannot apply. For
example, [1, p.171], suppose that we want to find out how many bicycles are owned by residents
in a community of 10,000 households. We sample every household in each of 20 blocks/clusters
selected at random from the 500 blocks in the community. Some blocks of the community may
compose mainly of families (with more bicycles), whereas the residents of other blocks are
mainly retirees (with fewer bicycles). Households selected in this example are not independent.
In addition, ignoring the survey weights may lead to biased inferences or undesired outcome in
the survey sampling practice. Classical nonparametric regression estimators and methods have
been extended and investigated in survey area. Korn and Graubard [2] suggested nonparametric
smoothing for estimating conditional means and percentile curves. Bellhouse and Stafford [3,4]
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2 G. Zhang et al.

developed estimators for density estimation and regression functions. Breidt and Opsomer [5]
proposed local polynomial regression estimators for estimating population totals and proved that
their estimator is asymptotically design unbiased and consistent. Buskirk and Lohr [6] presented
finite-sample and asymptotic properties under several approaches for inference of a modified
density estimator introduced by Buskirk [7] and Bellhouse and Stafford.[3] Opsomer and Miller [8]
studied the selection of the amount of smoothing for the nonparametric regression component
of a model-assisted estimator using a cross-validation criterion. Breidt et al.[9] and Goga [10]
proposed estimators of the population totals using smoothing splines. Harms and Duchesne [11]
considered nonparametric regression and derived the asymptotic mean squared error (MSE) of
the kernel estimators using a combined inference framework. Harms and Duchesne [11] first
proposed a completely data-driven optimal bandwidth for use in local linear estimator in complex
surveys.

In practice, we may want to discover a relationship between diastolic blood pressure as a func-
tion of age and gender from a survey data. For applications where prediction is the objective,
such as imputing missing values, regression estimation provides a useful tool. Smoothing splines
are important statistical tools for nonparametric regression function estimation. From a compu-
tational perspective, smoothing splines are the most efficient method. Standard smoothing spline
methods have been well studied. However, there is no literature on smoothing splines in survey
data. Our research is inspired by Harms and Duchesne.[11] We introduce smoothing splines to
survey data in estimating the regression function by incorporating sampling weights. This article
is organized as follows. In Section 2, we review the completely data-driven bandwidth selection
method for local linear estimator in complex surveys suggested by Harms and Duchesne.[11] In
Section 3, we extend smoothing spline estimator to complex surveys. In Section 4, we present
simulation studies. In Section 5, we give an example of application. Finally, we summarize our
research in Section 6.

2. Local linear estimator using completely data-driven bandwidth selection methods in
complex surveys

The classical bandwidth in nonparametric regression relies on an estimator of the optimal band-
width for iid data and is of the plug-in type. By modifying the bandwidth by a correction factor,
which takes into account the sampling plan, Harms and Duchesne [11] proposed a bandwidth
selector of the local linear estimator for use in complex surveys.

Let S be a survey sample, N be the population size, nS be the sample size (note that nS is random
with E(nS) = n), and let πk be the first-order inclusion probability with πk = p(unit k ∈ S).
Sample weight dk is the reciprocal of inclusion probability πk , i.e. dk = 1/πk for k ∈ S. Let N̂
be the estimate of population size N , i.e. N̂ = ∑nS

k=1 dk and let r be the sampling rate defined as
r = nS/N .

The local linear kernel estimator incorporating sample weights has a simple explicit formula
as shown in the following:

μ̂(t, h) =
∑

S{ŝ2(t, h) − ŝ1(t, h)(tk − t)}dkKh(tk − t)yk

ŝ2(t, h)ŝ0(t, h) − ŝ2
1(t, h)

, (2)

where ŝi(t, h) = ∑
S dk(tk − t)iKh(tk − t), i = 0, 1, and 2, and Kh(·) is the kernel function.

Let μ̃(t, h) be the classical local linear estimator which ignores the sample weights, Harms and
Duchesne [11] showed that

Bias(μ̂(t, h)) = Bias(μ̃(t, h)), (3)
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and

Var(μ̂(t, h)) = (� + r)Var(μ̃(t, h)), � = nS

N2
∑

U(dk − 1)
. (4)

By using Equations (3) and (4), Harms and Duchesne [11] derived the optimal bandwidth for
μ̂ by minimizing the asymptotic MSE as the following:

ĥopt(t) = (� + r)1/5h̃opt, (5)

where h̃opt is the optimal bandwidth for μ̃(t, h), (� + r)1/5 is called the correction factor. The
correction factor is a function related to the sampling plan and can be interpreted as a multiplicative
factor taking into account the information concerning the survey design. Details can be found from
Harms and Duchesne.[11]

3. Smoothing splines in complex surveys

Consider model (1), suppose μ(·) is an unknown, smooth regression curve in the second-order
Sobolev space W2

2 [0, 1].That is,μ andμ′ are absolutely continuous andμ′′ is a Lebesgue integrable
function. A natural cubic spline is a smooth piecewise cubic polynomial under certain boundary
constraints. The space of natural splines corresponding to t1, . . . , tn is a linear space of dimension
n. The natural cubic smoothing spline can be obtained by minimizing

1

n

n∑
i=1

(yi − f (ti))
2 + λ

∫ 1

0
(f ′′(t))2 dt (6)

over f ∈ W2
2 [0, 1], where λ > 0 is the smoothing parameter which controls the tradeoff between

smoothness and goodness-of-fit. The first term in Equation (6) is the residual sum of squares
which is a standard measure of goodness-of-fit to the data. The second term in Equation (6) is a
natural measure of curvature of the function. The smoothing spline estimator is as follows:

μ̂λ = (μ̂λ(t1), . . . , μ̂λ(tn))
T = Sλy, (7)

where Sλ = X(XTX + nλ�)−1XT, X = {xj(ti)}i,j=1,...,n, � = {∫ 1
0 xi(t)xj(t) dt}i,j=1,...,n, y =

(y1, . . . , yn) and x1, x2, . . . , xn is a basis for the set of natural cubic splines with knots at t1, . . . , tn
(details can be found in Eubank [12]).

3.1. Generalization of smoothing splines to survey data

The original generalization of smoothing splines is motivated by the case that each observation
has different variance. A generalized smoothing criterion is to minimize

n−1
n∑

i=1

wi(yi − f (ti))
2 + λ

∫ 1

0
(f

′′
(t))2 dt, (8)

where wi = [var(yi)]−1 for i = 1, . . . , n. Hence, the smoothing spline estimator is

μ̂
(2)
λ = (μ̂

(2)
λ (t1), . . . , μ̂(2)

λ (tn))
T = S(2)

λ y, (9)

where S(2)
λ = X(XTWX + nλ�)−1XT, and W = diag(w1, w2, . . . , wn).
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4 G. Zhang et al.

Consider a more general case, where there are ni ≥ 1 responses at the design point ti. We derive
the following generalized theorem.

Theorem 1 Let x1, x2, . . . , xn, be a basis for the set of natural splines of order 2m with knots
at t1, . . . , tn and define X = {xj(ti)}i,j=1,...,n. Also let w∗

i = [var(yi)/ni]−1 and n∗ = ∑
ni. The

minimizing criterion is as follows:

1

n∗

n∑
i=1

w∗
i (ȳi − f (ti))

2 + λ

∫ 1

0
[f m(t)]2 dt. (10)

The unique minimizer of Equation (10) over f ∈ Wm
2 [0, 1] (the mth order Sobolev space) is

μ̂
(3)
λ =

n∑
j=1

bλjxj, (11)

where bλ = (bλ1, . . . , bλn)
T is the solution with respect to c of the equation system

(XTW∗X + n∗λ�)c = XTȳ, (12)

with ȳ = (ȳ1, . . . , ȳn)
T. The smoothing spline estimators in matrix form are as follows:

μ̂
(3)
λ = S(3)

λ ȳ, (13)

where Sλ
(3) = X(XTW∗X + n∗λ�)−1XT and W∗ = diag(w∗

1, w∗
2, . . . , w∗

n).

Proof follows from Wahba and Wendelberger [13] immediately. Theorem 1 provides a key to
determining how to handle survey data. We describe it as follows,

Corollary Suppose that sampling weight of unit i is di and var(yi) = σ 2. N̂ is the estimated
total number of observations as defined in Section 2. To get a cubic smoothing spline for a survey
data, the minimizing criterion (10) is equivalent to minimizing

1

N̂

n∑
i=1

di(yi − f (ti))
2 + λ

∫ 1

0
[f ′′

(t)]2 dt. (14)

In this case, we can consider that there are di responses at design point ti. The unique mini-
mizer of Equation (14) over f ∈ W2

2 [0, 1] has the same form as Equation (11) with coefficients
bλ = (bλ1, . . . , bλn)

T the solution with respect to c of the equation system

(XTDX + N̂λ�)c = XTy. (15)

The smoothing spline estimators in matrix form are as follows:

μ̂
(4)
λ = S(4)

λ y, (16)

where Sλ
(4) = X(XTDX + N̂λ�)−1XT and D = diag(d1, d2, . . . , dn).
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3.2. Selection of λ

The smoothing parameter λ controls the tradeoff between smoothness and goodness-of-fit. We
want to choose λ in such a way that it can balance the bias and the variance. The cross validation
(CV) method and generalized cross validation (GCV) method are two frequently used technique
for smoothing parameter selection. CV(λ) is generally biased for prediction risk.

GCV was first proposed by Craven and Wahba [14] for use in the context of nonparametric
regression. In the 1980s there were numerous theoretical and practical studies which demonstrated
that GCV had a variety of statistical applications.[15] GCV is nearly an unbiased estimator of
prediction risk. The GCV criterion is defined as

GCV(λ) = (1/n)
∑n

i=1(yi − μλ(ti))2

((1/n)tr(I − Sλ))2
, (17)

where tr(·) denotes the trace of the matrix and λ is chosen to minimize Equation (17). Zhang [16]
showed that the GCV criterion is more likely to derive the estimate of λ with smaller variance for
smoothing splines.

4. Simulation studies

In this section, a small simulation study has been conducted to investigate finite sample properties
of the nonparametric regression estimators in complex surveys. We first consider the comparisons
between the nonparametric estimators (local linear estimator and smoothing spline estimator) by
incorporating sample weights or not. Another comparison is between local linear estimator and
smoothing spline estimator for complex surveys. For simplicity, we did the three simulation studies
separately. The two estimators are compared under completely data-driven methods: Harms and
Duchesne [11]’s methods for local linear estimator and GCV for smoothing spline estimator. For
these purposes, simulated data using different functions, different error variances and different
sampling rates are considered. The simulation set-up is similar as in Harms and Duchesne.[11]

The following equation is used to generate the population at the supermodel stage:

yi = μk(ti) + εi i = 1, . . . , 1000 and k = 1, 2, 3, 4, (18)

where each population has N = 1000 values of ti which is equally spaced in the interval [0, 1]
and random errors are from a normal distribution with mean 0 and constant variance σ 2. At the
sampling design stage, different sampling rates and different sampling designs are considered.

The simulation study was performed with factors: (1) σ 2 : 0.4 and 1; (2) sampling rate:
10% and 20%; (3) sampling plan: simple random sampling (SRS) and Poisson sampling scheme
(unequal-probability design). In the SRS sampling plan, all elements of the population were
assigned equal inclusion probabilities and sampled with replacement until nS = 200 units were
obtained. The sample weights wi of poisson sampling scheme have been chosen such that weights
are proportional to the auxiliary variable zi = (yi + 2)(ti + 2) and

∑
U 1/wi = E(nS) = N ∗ r;

(4) Four functions are used to generate populations at the supermodel stage:

Härdle: μ1(t) = sin3(2π t3) Härdle,[17]
Bump : μ2(t) = 1 + 2(t − 0.5) + exp(−200(t − 0.5)2) Breidt and Opsomer,[5]
Exponential : μ3(t) = exp(−8t) Breidt and Opsomer,[5]
Slowsine : μ4(t) = 2 + sin(2π t) Opsomer and Miller.[8]

Simulation done L = 500 times for each setting. Each time, we generate a population based
on one of the four supermodels, then draw a sample using either SRS or Poisson sampling.
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6 G. Zhang et al.

Our primary goal is to evaluate the estimators with respect to bias, variance and MSE. Let μ̂(t)
be an estimator of μ(t). Assume μ̂(i)(t) represents the estimator of μ(t) from the ith sample,
i = 1, . . . , L. The Monte Carlo mean EMC, the Monte Carlo bias BMC, Monte Carlo variance VMC,
and the Monte Carlo MSE are given by the following formulas:

EMC{μ̂(t)} = L−1
L∑

i=1

μ̂(i)(t), (19)

BMC{μ̂(t)} = EMC{μ̂(t)} − μ(t), (20)

VMC{μ̂(t)} = L−1
L∑

m=1

[μ̂(i)(t) − EMC{μ̂(t)}]2, (21)

and the main criterion for determining efficiency: Monte Carlo MSE is defined by

MSEMC{μ̂(t)} = L−1
L∑

i=1

{μ̂(i)(t) − μ(t)}2. (22)

For each sample, the estimators have been evaluated at 200 equally spaced values, which is at
each point tj = j/201, j = 1, . . . , 200. For each point tj the Monte Carlo bias, variance and MSE
have been calculated using the formulas (20)–(22), respectively. We summarize our findings by
averaging over the bias, variance and MSE of the 200 values. Under SRS, inclusion probabilities
and thus sample weights are equal for all units in the population. The estimators by incorporating
sample weights or not are the same. Therefore, we only report the results under Poisson sampling.

Tables 1 and 2 give the simulation results of local linear estimator and smoothing spline esti-
mator with sample weights and without sample weights, respectively. Tables 1 and 2 show that
both local linear estimator and smoothing splines with sample weights are effective in reducing
bias. The overall measurement of effectiveness MSE from both estimators is smaller than MSE of
the estimators without incorporating sample weights. Tables 1 and 2 also reveal interesting find-
ings. In general, the estimators incorporating weights perform better than the estimators without

Table 1. Simulation results under Poisson sampling scheme using local linear estimator, ‘wo’ means without weight
information, ‘w’ means sample weights are incorporated into estimator.

Bias Variance MSE

Function Sampling rate (%) wo w wo w wo w

Härdle σ = 0.4 10 0.0818 0.0372 0.2344 0.2326 0.2464 0.2388
20 0.0991 0.0347 0.0461 0.0470 0.0630 0.0544

σ = 1 10 0.4424 0.1571 0.3195 0.3508 0.5367 0.3977
20 0.4698 0.1438 0.0470 0.0889 0.2893 0.1306

Bump σ = 0.4 10 0.0383 0.0068 0.2939 0.2851 0.2996 0.2894
20 0.0509 0.0059 0.0454 0.0465 0.0498 0.0481

σ = 1 10 0.3674 0.1358 0.4716 0.4817 0.6171 0.5105
20 0.3783 0.1150 0.3291 0.3644 0.4903 0.3906

Exponential σ = 0.4 10 0.0530 −0.0032 0.0230 0.0245 0.0269 0.0255
20 0.0880 0.0189 0.0059 0.0070 0.0155 0.0095

σ = 1 10 0.4619 0.1223 0.1082 0.1562 0.3229 0.1729
20 0.4797 0.1258 0.0279 0.0580 0.2609 0.0770

Slow sine σ = 0.4 10 0.0457 0.0146 0.0714 0.0705 0.0777 0.0746
20 0.0556 0.0206 0.0099 0.0102 0.0137 0.0111

σ = 1 10 0.2437 0.0374 0.2687 0.2945 0.3456 0.3064
20 0.2155 −0.0275 0.0420 0.0554 0.0927 0.0621
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Table 2. Simulation results under Poisson sampling scheme using smoothing splines, ‘wo’ means without weight
information, ‘w’ means sample weights are incorporated into estimator.

Bias Variance MSE

Function Sampling rate (%) wo w wo w wo w

Härdle σ = 0.4 10 0.1065 0.0348 0.0200 0.0269 0.0404 0.0345
20 0.0709 −0.0046 0.0089 0.0145 0.0197 0.0177

σ = 1 10 0.4767 0.1551 0.4897 0.5858 0.7533 0.6339
20 0.4960 0.1697 0.0267 0.0986 0.2960 0.1397

Bump σ = 0.4 10 0.0068 0.0511 0.0272 0.0184 0.0300 0.0244
20 −0.0054 0.0458 0.0120 0.0095 0.0143 0.0139

σ = 1 10 0.3221 0.0773 0.0590 0.1443 0.1912 0.1646
20 0.3621 0.0865 0.0308 0.0831 0.1841 0.1026

Exponential σ = 0.4 10 0.0780 0.0065 0.0086 0.0107 0.0171 0.0128
20 0.1076 0.0270 0.0040 0.0061 0.0170 0.0081

σ = 1 10 0.4278 0.1194 0.0291 0.1198 0.2149 0.1368
20 0.3926 0.0465 0.0138 0.0694 0.1760 0.0774

Slow sine σ = 0.4 10 0.0373 −0.0026 0.0099 0.0115 0.0137 0.0135
20 0.0377 −0.0024 0.0051 0.0060 0.0071 0.0066

σ = 1 10 0.2789 0.0565 0.0544 0.0843 0.1541 0.1014
20 0.2368 −0.0130 0.0216 0.0448 0.1207 0.0707

Table 3. Comparison between local linear estimator and smoothing splines with sample weights under Poisson sampling
scheme, ‘LLE’ means local linear estimator with sample weights incorporated and ‘SS’ means smoothing splines with
sample weights incorporated.

Bias Variance MSE

Function Sampling rate (%) SS LLE SS LLE SS LLE

Härdle σ = 0.4 10 0.0198 0.0315 0.0261 0.2178 0.0318 0.2229
20 0.0123 0.0201 0.0145 0.0270 0.0192 0.0313

σ = 1 10 0.2194 0.2453 0.1521 0.3993 0.2292 0.4865
20 0.1386 0.1453 0.0975 0.09821 0.1379 0.1393

Bump σ = 0.4 10 0.0209 0.0208 0.02765 0.2571 0.0281 0.2575
20 0.0196 0.0254 0.0127 0.0758 0.0166 0.0798

σ = 1 10 0.0427 0.0700 0.1716 1.0363 0.1872 1.0607
20 0.0366 0.0464 0.1016 0.1430 0.1196 0.1610

Exponential σ = 0.4 10 −0.0030 0.0077 0.0123 0.0294 0.0143 0.0319
20 −0.0025 0.0029 0.0053 0.0074 0.0069 0.0085

σ = 1 10 0.1742 0.1828 0.1479 0.1648 0.1811 0.2010
20 0.0425 0.1266 0.0624 0.0602 0.0642 0.0762

Slow sine σ = 0.4 10 0.0006 0.0079 0.0110 0.0464 0.0123 0.0482
20 −0.0160 −0.0124 0.0048 0.0099 0.0067 0.0116

σ = 1 10 0.0961 0.1225 0.0683 0.2046 0.0916 0.2283
20 0.0104 0.0195 0.0483 0.0594 0.0551 0.0703

incorporating weights, especially under the situation when the variance σ 2 is large. For example,
in Table 1, with Härdle function, σ = 0.4, and sampling rate 20%, MSE without incorporating
weights is 0.0630 compared with the one with weights 0.0544; while under σ = 1 with sampling
rate 20%, MSEs are 0.2893 compared with 0.1306. The difference in MSE incorporating wights
or not increases when variance increases. The increase in variance reflects the spread out of data.
Under relatively large variance, weights become more important in estimating the parameters.
Table 3 reports the comparison between performance of local linear estimator and smoothing
splines under the Poisson sampling scheme for different settings. We notice from Table 3, for
function Härdle, σ = 0.4 and sampling rate 10%, MSE of smoothing spline estimator is much
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8 G. Zhang et al.

smaller than that of local linear estimator, which is 0.0318 compared with 0.2229; for sampling
rate 20%, MSEs are closer, which is 0.0192 and 0.0313, respectively. This pattern has been found
through all the four functions under different settings. Smoothing splines work better than local
linear estimator, particularly when sample size is small or sampling rate is small. This is because
Harms and Duchesne [11] derived the optimal bandwidth for μ̂ by minimizing the asymptotic
MSE. Therefore, when sample size is small, Harms and Duchesne [11]’s method does not work
very well. The proposed smoothing splines use GCV to select the smoothing parameter λ, which
is suitable even for small sample sizes. In summary, Table 3 shows that by incorporating sam-
ple weights, smoothing spline estimator works better than the local linear estimator in reducing
bias, variance and MSE, especially for small sample size, therefore suggested for nonparametric
regression estimation in complex surveys.

5. Application

In this section, we use an example to illustrate the use of our proposed smoothing splines in
complex surveys. At the end of the nineteenth century, it was widely thought that criminal ten-
dencies might be expressed in physical characteristics that were distinguishable from the physical
characteristics of noncriminal classes. Macdonell [18]’s data on criminals gave the length (cm)
of the left middle finger and height (inches) for 3000 criminals. Suppose an unequal-probability
sample [1, p.423] of 200 men is taken from the 3000 criminals and that the selection probabilities
are higher for the shorter men (shorter men have smaller weights). Figure 1 shows a scatterplot
of the data from this unequal-probability sample, along with the weighted least-square regression
line and smoothing spline curve by Equation (16). Since taller men have smaller inclusion proba-
bilities or larger weights, the slope of the regression line incorporating weights is drawn upward.
On the other hand, the smoothing spline describes the regression relationship by a smooth curve.
The choice between a parametric regression line and a nonparametric smoothing curve is quite
subjective. The smoothing splines give estimates of μ that allow great flexibility in the possible
form of the regression curve and, in particular, make no assumptions about a parametric form.
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Figure 1. Scatterplot of the unequal-probability data together with the weighted least square line and smoothing spline
curve.
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While parametric regression modelling is the most prevalent approach to regression analysis when
appropriate. In our example, both regression line and smoothing curve look good.

6. Conclusions

In this article, we extend smoothing splines to model regression structure in complex surveys. Both
local linear estimator and smoothing splines are studied under the unequal-probability sampling
scheme. Simulation studies show that the nonparametric estimators perform better when sample
weights are incorporated. Simulation studies also show that by incorporating sample weights,
smoothing splines perform significantly better than local linear estimator under completely data-
driven methods, and therefore is suggested for use in complex surveys.
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