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ABSTRACT
One problem of skew normal model is the difficulty in estimating the
shape parameter, for which the maximum likelihood estimate may be
infinite when sample size is moderate. The existing estimators suffer
from large bias even for moderate size samples. In this article, we pro-
posed five estimators of the shape parameter for a scalar skew normal
model, either by bias correction method or by solving a modified score
equation. Simulation studies show that except bootstrap estimator, the
proposed estimators have smaller bias compared to those estimators in
literature for small and moderate samples.

1. Introduction

The skew normalY ∼ SN(μ, σ, λ) is a class of distributions that includes the normal distri-
bution (λ = 0) as a special case. Its density function is as follows:

f (y; λ, μ, σ ) = 2
σ

φ

(
y − μ

σ

)
�

(
λ · y − μ

σ

)
,

where φ and � are the N(0, 1) density and distribution function, parameters μ, σ, and λ

regulate location, scale, and shape, respectively. The distribution is positively or negatively
asymmetric, in agreement with the sign of λ.

Azzalini (1985, 1986) introduced scalar skew normal problem and derived properties
of the scalar skew normal density function. Generalization to the multivariate case are
given by Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999), and Azzalini
(2005, 2011). The skew t family has been investigated by Branco and Dey (2001), Azza-
lini and Capitanio (2003), Gupta (2003) and Lagos-Álvarez and Jiménez-Gamero (2012).
Based on the method introduced by Firth (1993), Sartori (2006) investigated bias preven-
tion of the maximum likelihood estimate (MLE) for scalar skew normal and t distribu-
tion. If the MLE is subject to a positive bias b(λ) (true for skew normal), Firth (1993)
suggested shifting the score function U (λ) downward by an amount of U ′(λ)b(λ) at each
point of λ (illustrated in Fig. 1) to derive a modified score function U (λ) +U ′(λ)b(λ). It
is proved by Firth (1993) that bias of the MLE could be reduced by modifying the score
function.
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Figure . Modifications of the unbiased score function.

Bayes and Branco (2007) developed a simple closed form for the bias correction factor
suggested by Sartori (2006) through a rescaled logistic distribution. Azzalini and Arellano-
Valle (2013) formulated a general frame work for penalization of the log-likelihood function
and proposed maximum penalized likelihood estimate (MPLE) to correct some undesirable
behavior of the MLE. Genton (2004) gives a general overview of the skew distributions and
their applications.

The existing work of skew normal and t distribution mainly include the bias prevention
estimators: Sartori (2006)’s estimator (call λ̃1), Bayes and Branco (2007)’s estimator (call λ̃2),
and Azzalini and Arellano-Valle (2013)’s estimator (call λ̃3). With a moderate sample n = 20,
and shape parameter λ = 10, the probability that all observations are nonnegative reaches
52.5%, for whichMLE = ∞ and bias is∞ as well. For such situations, λ̃1, λ̃2 , and λ̃3 provided
finite solutions for the shape parameter λ, but with large bias. For example, simulations from
Sartori (2006) show that under the setting with λ = 10, n = 20, bias of λ̃1 reached −5.897.
Similar results can be found from λ̃2 and λ̃3. The bias prevention estimators work well only
for large samples.

In this article, we proposed five estimators for the shape parameter λ from different per-
spectives: bias correction approach and score function modification approach. This article
is organized as follows. In Section 2, we give a background review of Sartori (2006)’s bias
prevention estimator, Bayes and Branco (2007)’s approximation estimator and Azzalini and
Arellano-Valle (2013)’s MPLE. In Section 3, we propose five estimators. In Section 4, we
perform simulation studies and compare the proposed estimators with those reviewed in
Section 2. Section 5 gives conclusions.
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2. Background

Let Z1,Z2, . . . ,Zn be a random sample from SN(0, 1, λ) and let l(λ) be the log-likelihood
function denoted as

l(λ) = constant +
n∑

i=1

log{2�(λZi)}.

LetU (λ) be the score function of l(λ),

U (λ) =
n∑

i=1

φ(λZi)

�(λZi)
Zi.

U ′(λ) can be derived as follows,

U ′(λ) = −λ

n∑
i=1

φ(λZi)

�(λZi)
Z3
i −

n∑
i=1

(
φ(λZi)

�(λZi)

)2

Z2
i .

Based on Firth (1993), Sartori (2006) modified the usual score equationU (λ) = 0 by adding
an order O(1) term M(λ) = E{U ′(λ)b(λ)} (the expected value is used to remove the first-
order bias of λ̂), so that the modified score equation is

U (λ) + M(λ) = 0. (1)

Sartori’s estimator λ̃1 is the solution of Eq. (1) after replacingM(λ) byM1(λ) as follows,

M1(λ) = −λ

2
· a42(λ)

a22(λ)
,

where akh(λ) = E

{
Zk

(
φ(λZ)

�(λZ)

)h
}
, and the expected values need to be numerically com-

puted.
Bayes and Branco (2007)’s estimator is the solution of Eq. (1) after replacingM(λ) by

M2(λ) = −3λ
2

(
1 + 8λ2

π 2

)−1

,

whereM2(λ) is a simple closed form approximation ofM1(λ) using a rescaled logistic distri-
bution.

Azzalini and Arellano-Valle (2013) proposed MPLE λ̃3. They replaceM(λ) in Eq. (1) by

M3(λ) = −2C1C2
λ

1 +C2λ2 , (2)

where C1 = 0.875913,C2 = 0.856250. It is easy to see that M1(λ) ≈ M2(λ) ≈ M3(λ) =
O(λ−1). Hence, the finite solution of λ exists for all of the three methods. It can be shown
that for λ̃1, λ̃2 , and λ̃3, E(λ̃i − λ) = O(n−2).

3. Bias reduction techniques for scalar skew normal

All the three estimators λ̃1, λ̃2 , and λ̃3 suffer from large bias when sample size is small ormod-
erate. One intuitive way is to estimate the bias and subtract the bias from the estimator. Also
notice the systematic negative bias of the three estimators from simulation studies, we pro-
pose adjusting the score function to offset the systematic trend. We also examined jackknife
and bootstrap bias correction methods for comparison purpose.
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3.1. Bias correction forMLE and λ̃3

For a general MLE λ̂, it is well known that λ̂ is consistent with asymptotic distribution
√
n(λ̂ − λ)

d→ N(0, i(λ)−1), n → ∞,

where i(λ) is the expected Fisher information for a single observation. Consider the second
order expression for the mean of the limiting distribution of λ̂,

0 = U (λ̂) = U (λ) + (λ̂ − λ)U ′(λ) + 1
2
(λ̂ − λ)2U ′′(λ) + Op

(
n− 1

2

)
. (3)

Taking expectations through (3), we obtain

E(λ̂ − λ)E
{
U ′(λ)

} + cov(λ̂,U ′(λ))

+1
2
E(λ̂ − λ)2E{U ′′(λ)} + 1

2
cov{(λ̂ − λ)2,U ′′(λ)}

= O
(
n− 1

2

)
.

Let l2 be the log-likelihood for one single observation. For convenience, define

Krs(λ) = E[{l ′2(λ)}r{l ′′2 (λ) + i(λ)}s].
We can show that

E{l ′′′2 (λ)} = −3K11(λ) − K30(λ),

cov{λ̂,U ′(λ)} = o(n−1),

and

cov{(λ̂ − λ)2,U ′′(λ)} = o(n−1).

For detailed derivation of the above equations in this section, please refer to (Cox andHinkley,
1974, page 309) and Cox and Snell (1968). Some manipulation, then, gives

b(λ) = E(λ̂ − λ) = −K11(λ) + K30(λ)

2ni2(λ)
+ o(n−1)

= 1
2

· λa42(λ)

na222(λ)
+ o(n−1).

The proposed bias-corrected MLE takes the form of

λ̂bc = λ̂ − b(λ̂), (4)

with b(λ) = λa42(λ)/2na222(λ). If theMLE doesn’t exist, the bias prevention estimator λ̃1 will
be used instead.

Now, we consider bias correction of the estimator λ̃3. Recall that λ̃3 is the MPLE proposed
by Azzalini and Arellano-Valle (2013). Let

U ∗(λ) = U (λ) + M3(λ), (5)

whereM3(λ) is defined as in Eq. (2). Take derivative ofU ∗(λ), we have

U ∗′
(λ) = U ′(λ) + M′

3(λ),
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whereM′
3(λ) = −2C1C2(1 −C2λ

2)/(1 +C2λ
2)2. It is easy to show thatM3(λ) = O(λ−1) and

M′
3(λ) = O(λ−2). Apply Taylor theorem forU ∗(λ̃3) at the neighborhood of λ, we have

0 = U ∗(λ̃3) = U ∗(λ) +U ∗′
(λ)(λ̃3 − λ). (6)

Replace U ∗′
(λ) by E{U ∗′

(λ)} and use the fact that ni(λ) = −E{U ′(λ)}, λ̃3 − λ can be
expressed as follows,

λ̃3 − λ = − U ∗(λ)

E{U ∗′
(λ)} (7)

= U (λ) + M3(λ)

ni(λ) − M′
3(λ)

.

Use the result in Eq. (7) and take expectation through Eq. (6), we have

0 = E{U ∗(λ)} + E{U ∗′
(λ)}E(λ̃3 − λ) + cov{U ∗′

(λ), λ̃3 − λ}
= M3(λ) + {M′

3(λ) − na22(λ)}E(λ̃3 − λ)

+ 1
na22(λ) − M′

3(λ)
{−n(λa42(λ) + a33(λ))}.

Therefore, the bias of λ̃3 is

E(λ̃3 − λ) =
λna42(λ) + na33(λ)

na22(λ) − M′
3

− M3

M′
3 − na22(λ)

= −λna42(λ) + na33(λ) + M′
3M3 − na22(λ)M3

(M′
3 − na22(λ))2

.

The proposed bias-corrected λ̃3 takes the form of

λ̃sc = λ̃3 − b(λ̃3), (8)

with b(λ̃3) = − {
λna42(λ) + na33(λ) + M′

3M3 − na22(λ)M3
}
/(M′

3 − na22(λ))2.

3.2. Adjusted estimator

Consider Fig. 1,U (λ) cross the x-axis when Zis are with opposite sign numbers (λ̂ exists); and
U (λ) approaches x-axis without crossing it whenZis are all positive or all negative (λ̂ = ±∞).
For λ̂ = ±∞ cases, the bias prevention idea is to shift the score function by an amount of
{−U ′(λ)b(λ)} to force it cross the x-axis to obtain a finite MLE. From simulation studies, we
have noticed systematic negative biases of the three estimators λ̃1, λ̃2 , and λ̃3. This means that
the amount of shift {−U ′(λ)b(λ)} is too large for the three estimators. Therefore, it should be
reduced by a certain amount to allow the score function U (λ) cross the x-axis but produce
less bias. We propose addingM4(λ) to the score functionU (λ), so that

U (λ) + M4(λ) = 0, (9)

where

M4(λ) = − n
n + dλ

· λa42(λ)

2a22(λ)
.

Define a constant c such as

c = sup{d|U (λ∗) + M4(λ
∗) = 0,where λ∗ has negative bias}. (10)
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We can see that for any fixed d and λ, |M4(λ)| < |M1(λ)|, i.e., the shifted amount M4(λ) of
the score function is smaller than that of λ̃1. As n → ∞, n/(n + dλ) → 1, hence,M4(λ) −→
M1(λ). The Eq. (10) indicates that d ∈ [0, c], and that we are looking for a constant c such that
λ∗ has smallest negative bias (close to the true value). The proposed adjusted estimator λ̃ad is
naturally follows as the solution of Eq. (11),

U (λ) + M5(λ) = 0, (11)

withM5(λ) = − n
n + cλ

· λa42(λ)

2a22(λ)
. The following theorem can be derived.

Theorem3.1. The adjusted estimator λ̃ad has the following properties: (1) λ̃ad has finite solution;
(2) Bias(λ̃ad) = O(n−2); and (3) λ̃ad converges in probability to Sartori (2006)’s estimator λ̃1 as
n → ∞, i.e., λ̃ad

p→ λ̃1.

Proof. Proof follows from Sartori (2006). �

3.3. Jackknife and bootstrap bias correction

Follow Lagos-Álvarez et al. (2011) for bias correction in the type I generalized logistic dis-
tribution, we consider jackknife and bootstrap bias correction. The jackknife was introduced
by Quenouille (1949, 1956) to reduce bias of estimators. Shao and Tu (1995) discussed sev-
eral forms of the jackknife. The bootstrap was introduced by Efron (1990) for estimating the
sampling distribution of a statistic and its characteristics. Both jackknife and bootstrap are
popularly used since then. In the following, we will consider delete−1 jackknife and boot-
strap bias correction of the estimator λ̃3.

Recall that Z1,Z2, . . . ,Zn is a random sample from SN(0, 1, λ). Let λ̃3(i) be the solution of
the equation

U (λ) + M3(λ) = 0, (12)

with observation Zi deleted. Define
¯̃
λ3 = ∑n

i=1 λ̃3(i)/n. The jackknife bias is defined as
b̂ias jack = (n − 1)(¯̃λ3 − λ̃3) and the jackknife bias-corrected estimator of λ is

λ̃ jack = λ̃3 − b̂ias jack = nλ̃3 − (n − 1)¯̃λ3. (13)

For bootstrap bias correction, we use nonparametric bootstrap to approximate the bias of
λ̃3. First, we draw B independent bootstrap samples from Z1,Z2, . . . ,Zn with replacement.
Let Z(i)

1 ,Z(i)
2 , . . . ,Z(i)

n , i = 1, . . . ,B, be the ith bootstrap sample, and λ̃
(i)
3 be the solution of

Eq. (12) with the ith bootstrap samples. The bias can be estimated as follows:

b̂iasboot =
∑B

b=1 λ̃
(i)
3

B
− λ̃3.

The bootstrap bias-corrected estimator of λ is

λ̃boot = λ̃3 − b̂iasboot = 2λ̃3 −
B∑

b=1

λ̃
(i)
3 /B. (14)
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Table . Bias comparison among eight estimators: λ̃1 (Startori, ), λ̃2 (Bayes and Branco, ), λ̃3
(Azzalini and Arellano-Valle, ), λ̂bc (bias-corrected MLE), λ̃sc (bias-corrected λ̃3), λ̃ad (adjusted esti-
mator), λ̃ jack (jackknife estimator), and λ̃boot (bootstrap estimator).

Bias Comparison
(λ̂ < +∞) Theoretical

λ n λ̃1 λ̃2 λ̃3 λ̂bc λ̃sc λ̃ad λ̃ jack λ̃boot % %

  − . − . − . . − . − . − . − . . .
 − . − . − . . − . . − . − . . .
 − . − . − . . − . − . . − . . .
 − . − . − . . . . . − . . .
 . − . − . . . . . − . . .

  − . − . − . − . − . − . − . − . . .
 − . − . − . − . − . − . − . − . . .
 − . − . − . . − . − . − . − . . .
 − . − . − . . − . − . . − . . .
 − . − . − . . . . . − . . .

The last two columns are the estimated percentage of λ̂ < ∞ samples and the theoretical percentage, respectively.

4. Simulation studies

In this section, a small simulation study was conducted to evaluate the five proposed esti-
mators. We consider the shape parameter λ = 5 and λ = 10, and generate 2,000 skew nor-
mal SN(λ) samples with sizes n = 5, 10, 20, 50, and 100. For each generated sample, the
following estimators and their bias were computed: λ̃1 (Sartori 2006), λ̃2 (Bayes and Branco
2007), λ̃3 (Azzalini and Arellano-Valle 2013), λ̂bc (bias-corrected MLE), λ̃sc (bias-corrected
λ̃3), λ̃ad (adjusted estimator), λ̃ jack (jackknife bias-corrected estimator), and λ̃boot (bootstrap
bias-corrected estimator). The adjusted estimator λ̃ad is calculated as the solution of (9) with
d = 2, which is found by a comparison of several numbers of d in reducing the bias and was
used to approximate the constant c in (10). Empirical mean bias, mean variance, and mean
mean square error (MSE) are reported by Tables 1, 2, and 3, respectively. Notice that the three
estimators λ̃1, λ̃2 , and λ̃3 perform similarly without any noticeable difference in bias and
variance.

Tables 1, 2, and 3 show that except bootstrap method, all the four proposals work very
well for small andmedium samples (n ≤ 20) in bias reduction. For large samples, the existing
methods work better. We also notice that bias correction is more needed for samples with

Table . Variance comparison among eight estimators: λ̃1 (Startori, ), λ̃2 (Bayes and Branco, ), λ̃3
(Azzalini and Arellano-Valle, ), λ̂bc (bias-corrected MLE), λ̃sc (bias-corrected λ̃3), λ̃ad (adjusted estima-
tor), λ̃ jack (jackknife estimator) and λ̃boot (bootstrap estimator).

Variance Comparison

λ n λ̃1 λ̃2 λ̃3 λ̂bc λ̃sc λ̃ad λ̃ jack λ̃boot

  . . . . . . . .
 . . . . . . . .
 . . . . . . . .
 . . . . . . . .
 . . . . . . . .

  . . . . . . . .
 . . . . . . . .
 . . . . . . . .
 . . . . . . . .
 . . . . . . . .
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Table . MSE comparison among eight estimators: λ̃1 (Startori, ), λ̃2 (Bayes and Branco, ), λ̃3
(Azzalini and Arellano-Valle, ), λ̂bc (bias-corrected MLE), λ̃sc (bias-corrected λ̃3),λ̃ad (adjusted estima-
tor), λ̃ jack (jackknife estimator) and λ̃boot (bootstrap estimator).

Mean Square Errors Comparison

λ n λ̃1 λ̃2 λ̃3 λ̂bc λ̃sc λ̃ad λ̃ jack λ̃boot

  . . . . . . . .
 . . . . . . . .
 . . . . . . . .
 . . . . . . . .
 . . . . . . . .

  . . . . . . . .
 . . . . . . . .
 . . . . . . . .
 . . . . . . . .
 . . . . . . . .

large shape parameter. From MSE perspective, only λ̃sc is admissible for small and moderate
samples. We think that there is still room to improve λ̃ad. In simulation study, we used d = 2
to approximate the constant c defined in (10). Future research may consider looking for a
better approximation of the constant c.

5. Conclusions

The difficulty of the shape parameter estimation in a scalar skew normal model lies in the
fact that there is a considerable percentage of samples in whichMLE goes to infinity. The bias
prevention estimators in literature are based on large sample properties, therefore, they don’t
work well for small and moderate samples. In this research, we have studied this problem
from different perspectives, such as bias correction approach and score function modifica-
tion approach. Simulation studies show that λ̂bc (bias-corrected MLE), λ̃sc (bias-corrected
λ̃3), λ̃ad (adjusted estimator), and λ̃ jack (jackknife bias-corrected estimator) are all effective
in reducing bias for small and moderate samples. However, the price paid for reduced bias
is the relatively large variance. For scalar skew normal shape parameter estimation, if sample
size is large, the existing estimators λ̃1, λ̃2, λ̃3 all work well, there is no need to perform bias
correction; if sample size is small or moderate, we suggest using the proposed estimators λ̃sc
since it has smaller bias and MSE.

Acknowledgments

The authors thank the referees for their constructive and insightful comments and suggestions to
improve the manuscript.

References

Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of
Statistics 12:171–178.

Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica
46:199–208.

Azzalini, A. (2005). The skew-normal distribution and related multivariate families (with discussion).
Scandinavian Journal of Statistics 32:159–188.



COMMUNICATIONS IN STATISTICS—SIMULATION AND COMPUTATION® 839

Azzalini, A. (2011). Skew-normal distribution. International Encyclopedia of Statistical Sciences
19:1342–1344.

Azzalini, A., Arellano-Valle, R. B. (2013). Maximum penalized likelihood estimation for skew-normal
and skew-t distributions. Journal of Statistical Planning and Inference 143:419–433.

Azzalini, A., Capitanio, A. (1999). Statistical applications of the multivariate skew normal distribution.
Journal of the Royal Statistical Society: Series B 61:579–602.

Azzalini, A., Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis
on a multivariate skew t distribution. Journal of the Royal Statistical Society: Series B 65:367–389.

Azzalini, A., Dalla Valle, A. (1996). The multivariate skew normal distribution. Biometrika 83:715–726.
Bayes, C. L., Branco, M. D. (2007). Bayesian inference for the skewness parameter of the scalar skew-

normal distribution. Brazilian Journal of Probability and Statistics 21:141–163.
Branco, M. D., Dey, D. K. (2001). A general class of multivariate skew-elliptical distributions. Journal

of Multivariate Analysis 79:99–113.
Cox, D. R., Hinkley, D. V. (1974). Theoretical Statistics. Boca Raton, 1st ed. FL: Chapman & Hall/CRC.
Cox, D. R., Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society:

Series B 30:248–275.
Efron, B. (1990). More efficient bootstrap computations. Journal of the American Statistical Association

85:79–89.
Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80:27–38.
Genton,M.G. (2004). Skew-Elliptical Distributions and Their Applications: A Journey BeyondNormality.

1st ed. Boca Raton, FL: Chapman & Hall/CRC.
Gupta, A. K. (2003). Multivariate skew t-distribution. Statistics 37:359–363.
Lagos-Álvarez, B., Jiménez-Gamero, M. D. (2012). A note on bias reduction of maximum likelihood

estimates for the scalar skew t distribution. Journal of Statistical Planning and Inference 142:608–
612.

Lagos-Álvarez, B., Jiménez-Gamero, M. D., Alba Fernández, M. (2011). Bias correction in the type I
generalized logistic distribution. Communication in Statistics-Simulation and Computation 40:511–
531.

Quenouille, M. H. (1949). Problems in plane sampling. Annals of Mathematical Statistics 20:355–375.
Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika 43:353–360.
Sartori, N. (2006). Bias prevention of maximum likelihood estimates for scalar skew normal and skew

t distributions. Journal of Statistical Planning and Inference 136:4259–4275.
Shao, J., Tu, D. (1995). The Jackknife and Bootstrap. 1st ed. New York: Springer-Verlag.


	Abstract
	1.Introduction
	2.Background
	3.Bias reduction techniques for scalar skew normal
	3.1.Bias correction for MLE and 
	3.2.Adjusted estimator
	3.3.Jackknife and bootstrap bias correction

	4.Simulation studies
	5.Conclusions
	Acknowledgments
	References

