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1. Introduction

The skew normal Y ~ SN (u, o, A) is a class of distributions that includes the normal distri-
bution (A = 0) as a special case. Its density function is as follows:

: _ 2, (7= SR
o= 20 (55 o 3 255),

o

where ¢ and ® are the N(0, 1) density and distribution function, parameters w, o, and A
regulate location, scale, and shape, respectively. The distribution is positively or negatively
asymmetric, in agreement with the sign of A.

Azzalini (1985, 1986) introduced scalar skew normal problem and derived properties
of the scalar skew normal density function. Generalization to the multivariate case are
given by Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999), and Azzalini
(2005, 2011). The skew ¢ family has been investigated by Branco and Dey (2001), Azza-
lini and Capitanio (2003), Gupta (2003) and Lagos-Alvarez and Jiménez-Gamero (2012).
Based on the method introduced by Firth (1993), Sartori (2006) investigated bias preven-
tion of the maximum likelihood estimate (MLE) for scalar skew normal and ¢ distribu-
tion. If the MLE is subject to a positive bias b(A) (true for skew normal), Firth (1993)
suggested shifting the score function U(A) downward by an amount of U’(X)b(1) at each
point of A (illustrated in Fig. 1) to derive a modified score function U (%) + U’ (A)b(1). It
is proved by Firth (1993) that bias of the MLE could be reduced by modifying the score
function.
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Figure 1. Modifications of the unbiased score function.

Bayes and Branco (2007) developed a simple closed form for the bias correction factor
suggested by Sartori (2006) through a rescaled logistic distribution. Azzalini and Arellano-
Valle (2013) formulated a general frame work for penalization of the log-likelihood function
and proposed maximum penalized likelihood estimate (MPLE) to correct some undesirable
behavior of the MLE. Genton (2004) gives a general overview of the skew distributions and
their applications.

The existing work of skew normal and ¢ distribution mainly include the bias prevention
estimators: Sartori (2006)’s estimator (call A,), Bayes and Branco (2007)’s estimator (call x),
and Azzalini and Arellano-Valle (2013)’s estimator (call A3). With a moderate sample n = 20,
and shape parameter A = 10, the probability that all observations are nonnegative reaches
52.5%, for which MLE = 0o and bias is 0o as well. For such situations, A, A, , and A3 provided
finite solutions for the shape parameter A, but with large bias. For example, simulations from
Sartori (2006) show that under the setting with A = 10, n = 20, bias of 11 reached —5.897.
Similar results can be found from %, and 5. The bias prevention estimators work well only
for large samples.

In this article, we proposed five estimators for the shape parameter A from different per-
spectives: bias correction approach and score function modification approach. This article
is organized as follows. In Section 2, we give a background review of Sartori (2006)’s bias
prevention estimator, Bayes and Branco (2007)’s approximation estimator and Azzalini and
Arellano-Valle (2013)’s MPLE. In Section 3, we propose five estimators. In Section 4, we

perform simulation studies and compare the proposed estimators with those reviewed in
Section 2. Section 5 gives conclusions.
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2. Background
Let Z,, Z,, ..., Z, be a random sample from SN(0, 1, 1) and let I(1) be the log-likelihood

function denoted as

I(A) = constant + Zlog{ZdD(AZi)}.

i=1

Let U (1) be the score function of (1),

¢(?~Z)
v = Z cb(,\Z)

U’ (M) can be derived as follows,

oy, N 902D ¢(RZ)
v = )‘;q)(xz) Z(@b(u)) a

Based on Firth (1993), Sartori (2006) modified the usual score equation U (1) = 0 by adding
an order O(l) term M(A) = E{U’(A)b(1)} (the expected value is used to remove the first-
order bias of 1), so that the modified score equation is

U + M) =0. (1)
Sartori’s estimator A, is the solution of Eq. (1) after replacing M (A) by M; (1) as follows,
A a42 1)
M = _=
1) = 2 ap )’
$(12)\"

where ay,(\) = E {Zk (

puted.
Bayes and Branco (2007)’s estimator is the solution of Eq. (1) after replacing M (1) by

32 8A2\ !

where M, (A) is a simple closed form approximation of M, (1) using a rescaled logistic distri-
bution. 5
Azzalini and Arellano-Valle (2013) proposed MPLE A;. They replace M (4) in Eq. (1) by

, and the expected values need to be numerically com-
d(A2)

M; (L) = -2C,C,—, 2
20 O e )

where C; = 0.875913, C, = 0.856250. It is easy to see that M;(X) ~ M,(A) ~ M;(A) =
O()u_l).~H€£1C€, the finite solution of A exists for all of the three methods. It can be shown
that for A;, A, ,and A3, E(A; — A) = O(n~2).

3. Bias reduction techniques for scalar skew normal

All the three estimators 5\1 , 5»2 ,and 5\3 suffer from large bias when sample size is small or mod-
erate. One intuitive way is to estimate the bias and subtract the bias from the estimator. Also
notice the systematic negative bias of the three estimators from simulation studies, we pro-
pose adjusting the score function to offset the systematic trend. We also examined jackknife
and bootstrap bias correction methods for comparison purpose.
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3.1. Bias correction for MLE and ).,

For a general MLE A, it is well known that A is consistent with asymptotic distribution

VG =) 5 N, i)Y, n — oo,

where i()) is the expected Fisher information for a single observation. Consider the second
order expression for the mean of the limiting distribution of A,

0=UMR) =UR) + (G —0U' ) + %(i — MU' (M) + 0, (n—%) . 3)
Taking expectations through (3), we obtain
E(h = WE{U' W)} + cov(h, U' (M)
+%E(X — MU'V} + %cov{(i — )2 U" (V)
=0 (n_%) .
Let I, be the log-likelihood for one single observation. For convenience, define
K () = E[{LOVYE () + i)
We can show that
E{l;’(M)} = =3Ku(A) — Kz (),
cov{h, U'(M)} = o(n™1),
and
cov{(A — )2, U" (W)} = o(nM).

For detailed derivation of the above equations in this section, please refer to (Cox and Hinkley,
1974, page 309) and Cox and Snell (1968). Some manipulation, then, gives

_Ku()») + Kso(A)

b(x) =EQ( — 1) = !
(1) = E( ) () +o(n™")
N 1 Aa42 ()\.) 1
2 nak,(h) o).
The proposed bias-corrected MLE takes the form of
hpe = A — bV, @)

with (L) = Aag (1) /2na, ()). If the MLE doesn’t exist, the bias prevention estimator A will
be used instead.

Now, we consider bias correction of the estimator 5. Recall that %5 is the MPLE proposed
by Azzalini and Arellano-Valle (2013). Let

U*(X) =U@) + M3(2), (5)
where M;()) is defined as in Eq. (2). Take derivative of U* (1), we have

U¥ (L) =U' (L) 4+ M),
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where Mj(A) = —2C,C,(1 — GAY) /(1 + CZAZ)ZLIt is easy to show that M3 (1) = O(A™') and
M (A) = O(A™2). Apply Taylor theorem for U* (A3) at the neighborhood of A, we have

0=U"(s) =U*(W) + U (W) (s — ). (6)

Replace U* (A) by E{U¥ (1)} and use the fact that ni(A\) = —E{U’(1)}, A3 — A can be
expressed as follows,

A%

Ay —h=——rr—— (7)
E{U* (M)}
UM+ M)
C i) — M)
Use the result in Eq. (7) and take expectation through Eq. (6), we have
0 = E{U*(W)} + E{UY W}IE(s — 1) + cov{U* (1), &3 — A}
= M;(L) + {M5(X) — nan(A)}E(X; — 1)
1
—n(Aagy(d A}
+ 12 V) —Mg(k){ n(hagp(d) + as (1))}
Therefore, the bias of A; is
Anag () + nass(A)
—M;
~ A) — M,
EG, - 2) = —e2) = M
M3 — Nndy; (}\.)
. _knau (A) + nasz (L) + MiMs — naz, (L) Ms;
(Mj — nay(1))>? ‘
The proposed bias-corrected A takes the form of
hsc = ks = b(ha), (8)

with b(hs) = — {Anasn () + nass (h) + MyMs — nax G)Ms} /(M5 — nax (3.))*.

3.2. Adjusted estimator

Consider Fig. 1, U (1) cross the x-axis when Z;s are with opposite sign numbers (3» exists); and
U (1) approaches x-axis without crossing it when Z;s are all positive or all negative (i = +00).
For A = 400 cases, the bias prevention idea is to shift the score function by an amount of
{=U’(A)b()\)} to force it cross the x-axis to obtain a finite MLE. From simulation studies, we
have noticed systematic negative biases of the three estimators 11 , 5\2 ,and 5»3. This means that
the amount of shift {—U’(A1)b(A)} is too large for the three estimators. Therefore, it should be
reduced by a certain amount to allow the score function U () cross the x-axis but produce
less bias. We propose adding M, (1) to the score function U (1), so that

U) + My(r) =0, )
where

n Aagp (M)
n—+ di 2@22 ()\.) '

My(1) = —

Define a constant ¢ such as

¢ =sup{d|U(\") + My(X*) = 0, where A" has negative bias}. (10)



836 (&) G.ZHANGANDR.LIU

We can see that for any fixed d and A, |[M,(X)| < |M;(X)|, i.e., the shifted amount M4()) of
the score function is smaller than that of A,. As n — 00, n/(n+ d\) — 1,hence, My(L) —>
M; (1). The Eq. (10) indicates that d € [0, c], and that we are looking for a constant ¢ such that
A* has smallest negative bias (close to the true value). The proposed adjusted estimator Aag i
naturally follows as the solution of Eq. (11),

U) +Ms(h) =0, (11)

n Aagp (L)

with Ms(A) = — :
n—+ ch 2022 ()\.)

. The following theorem can be derived.

Theorem 3.1. The adjusted estimator Aaa has the following properties: (1) hoq has finite solution;
(2) Bias(Aaq) = O(n™2); and (3) haa converges in probability to Sartori (2006)’s estimator A, as

T
n— o0, i.e, Agg —> Al

Proof. Proof follows from Sartori (2006). O

3.3. Jackknife and bootstrap bias correction

Follow Lagos-Alvarez et al. (2011) for bias correction in the type I generalized logistic dis-
tribution, we consider jackknife and bootstrap bias correction. The jackknife was introduced
by Quenouille (1949, 1956) to reduce bias of estimators. Shao and Tu (1995) discussed sev-
eral forms of the jackknife. The bootstrap was introduced by Efron (1990) for estimating the
sampling distribution of a statistic and its characteristics. Both jackknife and bootstrap are
popularly used since then. In the following, we will consider delete—1 jackknife and boot-
strap bias correction of the estimator 5.

Recall that Z, Z,, ..., Z, is arandom sample from SN (0, 1, A). Let 13(,-) be the solution of
the equation

U) + M) =0, (12)

with observation Z; deleted. Define A; = Yo 5»3(1‘) /n. The jackknife bias is defined as

bias ack = (n — 1)(5»3 - 5»3) and the jackknife bias-corrected estimator of A is

Xjack = 13 — biasj, = n5»3 — (n— 1)As. (13)
For bootstrap bias correction, we use nonparametric bootstrap to approximate the bias of
As. First, we draw B independent bootstrap samples from Z;, Z,, ..., Z, with replacement.
Let Zf'), Z;’), ..., ZV i=1,...,B, be the ith bootstrap sample, and )\go be the solution of
Eq. (12) with the ith bootstrap samples. The bias can be estimated as follows:
B ()
_ 3 .
biaspen = Z"‘Bl - — s

The bootstrap bias-corrected estimator of A is

B
Moot = I3 — biaspeq =203 — Y _ 1Y /B. (14)
b=1
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Table 1. Bias comparison among eight estimators: 11 (Startori, 2006), A , (Bayes and Branco, 2007), A
(Azzalini and Arellano-Valle, 2013), ., (bias-corrected MLE), A (blas-corrected %3), A4 (adjusted esti-

mator), A jack (jackknife estimator), and 1, .. (bootstrap estimator).
Bias Comparison
(A < +00) Theoretical

Aon M Ay A3 Mbe Asc *ad X jack oot % %
5 5 —38367 —3.8378 —3.8169 15487 —2.8557 —0.6169 —3.0074 —3.8370 29.45 27.70
10 —29321 —29799 —29317 22052 —1.9755 01329 —14557 —3.0246 49.30 47.73
20 —17206 —17886 —1.6813 15455 —0.5224 —0.0725 02866 —1.9125 74.45 72.68
50 —0.2506 —0.4367 —0.3167 0.8166 0.7034 0.3035 0.6606 — 0.8950 95.20 96.10
100 0.0130 —0.0455 —0.0139 0.2286 0.6055 0.1164 0.1411  —0.5138 99.85 99.84
10 5 —87893 —88078 —87728 —20213 —77877 —42517 —7.8898 —8.7821 14.70 14.88
10 —77206 —7.8064 —7.6863 —0.4815 —6.6637 —3.4285 —58375 —7.8352 27.85 27.55
20 —5.9499 —6.0674 —5.8859 07907 —43533 —26139 —28286 —6.1351 47.65 47.52
50 —25310 —2.8728 —2.5830 0.6848 —0.3144 —0.5205 13768 —3.0968 81.40 80.05
100 —0.5412 —07596 —0.5230 0.7716 1.3282 0.2560 0.6022 —1.3407 95.90 96.02

The last two columns are the estimated percentage of A < oo samples and the theoretical percentage, respectively.

4, Simulation studies

In this section, a small simulation study was conducted to evaluate the five proposed esti-
mators. We consider the shape parameter A = 5 and A = 10, and generate 2,000 skew nor-
mal SN(A) samples with sizes n = 5, 10, 20, 50, and 100. For each generated sample, the
following estimators and their bias were computed: A (Sartori 2006), A (Bayes and Branco
2007), A5 (Azzalini and Arellano-Valle 2013), S‘bc (bias-corrected MLE), Ag¢ (bias-corrected
), Xad (adjusted estimator), A jack (jackknife bias-corrected estimator), and Moot (bootstrap
bias-corrected estimator). The adjusted estimator S‘ad is calculated as the solution of (9) with
d = 2, which is found by a comparison of several numbers of d in reducing the bias and was
used to approximate the constant ¢ in (10). Empirical mean bias, mean variance, and mean
mean square error (MSE) are reported by Tables 1, 2, and 3, respectively. Notice that the three
estimators A, A, , and A3 perform similarly without any noticeable difference in bias and
variance.

Tables 1, 2, and 3 show that except bootstrap method, all the four proposals work very
well for small and medium samples (# < 20) in bias reduction. For large samples, the existing
methods work better. We also notice that bias correction is more needed for samples with

Table 2. Variance comparison among eight estimators: i (Startori, 2006), (Bayes and Branco, 2007), &
(Azzalini and Arellano-Valle, 2013), )‘bc (bias-corrected MLE), 4.5 (bias- corrected A3), A ad (adjusted estlma—

tor), A jack (jackknife estimator) and X oot (DOOtstrap estimator).
Variance Comparison

A n M A &) Moc Asc Aad 2 jack Mboot
5 5 0.0733 0.0675 0.0781 49.9059 0.1746 32115 0.4369 0.0778
10 03078 02815 03002 52.8567 07884 39.1468 25469 03582
20 11035 0.9790 11616 42.6702 27217 16.1576 83396 12477

50 33 24887 2.7447 15.4587 5.6216 8.5271 16.6452 27521
100 2.5556 22694 25770 3.9826 37198 3.0563 8.9424 2.4476
10 5 0.0567 0.0569 0.0570 60.5340 01472 45.0309 03815 0.0625
10 03970 02752 03695 69.2983 0.951 47.9203 29509 04101
20 13551 12935 15519 65.8202 42194 34.7103 10.7657 17632
50 6.6020 5.0796 6.1174 414082 14.0655 27.7209 40.6141 7.2765

100 11.4856 10.5395 10.8033 27.2896 23.5940 203222 37.6914 13.2780
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Table 3. MSE comparison among eight estimators: 11 (Startori, 2006), 12 (Bayes and Branco, 2007), 5»3
(Azzalini and Arellano-Valle, 2013), i}, (bias-corrected MLE), A (bias-corrected 4;),1,4 (adjusted estima-

tor), Ajack (jackknife estimator) and ibwr (bootstrap estimator).
Mean Square Errors Comparison
A n A Ay A3 Abe Asc Aad A jack Moot
5 5 14.7938 14.7969 14.6470 522797 8.3296 32.4795 9.4817 14.801
10 8.9050 9.1615 8.8955 57.6934 4.6910 39.1449 4.6647 9.5066
20 4.0637 41777 3.9881 46.4340 29933 16.1548 8.4176 49049
50 33722 2.6783 2.8437 16.1178 6.1136 8.6150 17.0733 3.5518
100 2.5545 22703 2.5759 4.0328 4.0847 3.0684 8.9534 2.7092
10 5 773094 77.6356 77.0203 64.5895 60.7964 63.0859 62.6313 77.1880

10 60.0059 61.2160 59.4488 69.4955 45.3560 59.6515 37.0267 61.8014

20 36.7557 38.1067 36.1955 66.4125 23.1692 41.5257 18.7614 39.4021

50 13.0050 13.3305 12.7865 41.8565 14.1574 27.9780 42.4897 16.8631
100 n.7729 nms3 1.0714 27.8714 253464 203776 38.0165 15.0624

large shape parameter. From MSE perspective, only A.. is admissible for small and moderate
samples. We think that there is still room to improve j‘ad' In simulation study, we used d = 2
to approximate the constant ¢ defined in (10). Future research may consider looking for a
better approximation of the constant c.

5. Conclusions

The difficulty of the shape parameter estimation in a scalar skew normal model lies in the
fact that there is a considerable percentage of samples in which MLE goes to infinity. The bias
prevention estimators in literature are based on large sample properties, therefore, they don’t
work well for small and moderate samples. In this research, we have studied this problem
from different perspectives, such as bias correction approach and score function modifica-
tion approach. Simulation studies show that B‘bc (bias-corrected MLE), Xsc (bias-corrected

5»3), iad (adjusted estimator), and A jack (jackknife bias-corrected estimator) are all effective
in reducing bias for small and moderate samples. However, the price paid for reduced bias
is the relatively large variance. For scalar skew normal shape parameter estimation, if sample
size is large, the existing estimators 5»1, 5»2, 5»3 all work well, there is no need to perform bias
correction; if sample size is small or moderate, we suggest using the proposed estimators Asc
since it has smaller bias and MSE.
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