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My primary research interests revolve around nonparametric function estimation and

computational statistics. Much of my work involves developing new statistical theory, meth-

ods, and algorithms within these domains. With an educational background in engineering,

management, and statistics, my research extends to machine learning, survey sampling,

mixed models, financial engineering, and applications in healthcare. Among my 37 research

articles, 30 have been published in high-quality refereed statistical journals or journals from

other applied areas. Seven of these papers are single-authored, and I have served as the first

author on 23 of them. Additionally, 12 of the articles are co-authored with graduate students

and 23 of them have been done since I became an Associate in August 2015. Throughout

my research career, I have encountered and overcome various challenges while exploring new

questions and ideas. These experiences have deepened my appreciation for the beauty of

statistics, and I thoroughly enjoy engaging in research.

In the subsequent sections, my aim is to present a summary of my research accomplish-

ments and shed light on the future avenues I plan to pursue in four significant domains since

2015: (1) nonparametric function estimation, (2) computational and applied statistics, (3)

applications, and (4) other ongoing research. The intent behind this discussion is to make the

content accessible to nonspecialists, focusing on providing a broad perspective rather than

delving into intricate historical and technical details that can be found in the referenced

papers.

1 Nonparametric Function Estimation

Nonparametric function estimation is a powerful statistical tool that has been a focal point

of my research. My exploration in this field began with studying confidence bands in non-

parametric regression (Zhang & Lu, 2008). During my dissertation, I delved into smoothing

spline estimators for multivariate regression (Zhang, 2011, 2012a). Subsequently, my in-

vestigations expanded to encompass generalized additive partially linear models, extensions

for complex survey data, and advancements in technical analysis. Currently, my research

focuses on statistical learning for multiple tasks using kernel methods, as well as developing

nonparametric regression tests specifically tailored for survey data.

1



1.1 Smoothing splines and generalized additive partially linear

models

Spline smoothing serves as a crucial statistical tool for nonparametric function estimation.

Among various approaches, smoothing splines stand out due to their computational effi-

ciency. However, extending smoothing splines to higher dimensional settings has posed

challenges. Even the widely used thin plate splines have a complexity of O(n3) for a sample

of size n, which renders them computationally slow and impractical for big data applica-

tions. In my dissertation research (Zhang, 2011, 2012a), I tackled this issue by developing

a high-dimensional smoothing spline that achieves comparable estimation accuracy while

maintaining computational efficiency.

Generalized additive models (GAMs) are an effective regression tool for analyzing high-

dimensional data. A more flexible extension of GAM is the generalized additive partially

linear model (GAPLM), which incorporates both parametric and nonparametric components

in the modeling process. Let Y be a response random variable, and let the predictors be

divided into two groups: T and X. The group T is used in a linear model, while the

predictors Xh, where h = 1, 2, · · · , d2, are used in a generalized additive model. We define

T = (1, T1, · · · , Td1)T , X = (X1, · · · , Xd2)
T , and β = (β0, β1, · · · , βd1)T as the parameter

vector, where the superscript T denotes the transpose. Assuming a fixed σ-finite measure,

the probability density function of Yi conditional on Xi and Ti is given by the exponential

family as follows:

f(Yi|Xi,Ti, ϕ) = exp {Yi ·m(Xi,Ti)− b{m(Xi,Ti)}/a(ϕ) + h(Yi, ϕ)} .

The expected value of Y given T and X can be expressed as a function of the mean m(T,X):

E(Y |T,X) = b′{m(T,X)}, (1)

where m(T,X) = βTT +
∑d2

h=1mh(Xh) and mh(Xh) represents the nonparametric com-

ponent function of the GAPLM. The functions b′ and b′′ are the first and second deriva-

tives of a function b that implicitly relates m(t,x) to the conditional variance function

σ2(t,x) = Var(Y |T = t,X = x). In our research (Liu, Härdle, & Zhang, 2017), we assume

that Var(Y |T = t,X = x) = a(ϕ)b′′[(b′)−1{E(Y |T = t,X = x)}], where a(ϕ) is a nuisance

parameter that quantifies overdispersion.

Several estimation methods for Model (1) have been proposed, but they either lack theo-

retical justification (i.e., missing asymptotic properties and confidence bands for the estima-

tors of nonparametric components) or are computationally expensive. To improve upon the
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current methods, we extend the hybrid spline-backfitted kernel (SBK) methods from GAM

to GAPLM. SBK combines the favorable characteristics of spline and kernel methods, offer-

ing fast, efficient, and reliable inference on component functions. The estimation procedure

involves two steps. In the first step, the parameters β and the spline estimation of non-

parametric component functions mh(Xh) are obtained using quasi-likelihood. In the second

step, kernel smoothing is employed to enhance the accuracy and reliability of the component

function estimation. The asymptotic properties are derived, and simulation results provide

support for the theoretical properties.

1.2 Extension in complex surveys

In the realm of complex surveys, such as the American Communities Survey conducted by

the U.S. Census Bureau, the data collection process involves sampling from strata (e.g.,

states and major metropolitan areas) using independent samples. Additionally, within each

stratum, clusters of observations (e.g., counties within a state and households within com-

munities) are randomly sampled. The inherent dependencies within clusters violate the

assumptions of independence required for traditional nonparametric techniques. Therefore,

it becomes imperative to develop estimation approaches that explicitly account for the de-

pendence that occurs in complex surveys. In my research on the application of nonparametric

methods to complex surveys, I have achieved significant progress.

1.2.1 Smoothing splines estimators for Complex Surveys

In a groundbreaking study, Zhang, Christensen, and Zheng (2015) were the first to investi-

gate the use of smoothing splines for modeling the regression mean structure in the context of

complex surveys. We introduced a weighted smoothing spline criterion and derived estima-

tors based on smoothing splines. Through the use of a fully data-driven bandwidth selection

method, our simulation studies demonstrated the undesirability of ignoring sampling weights

and showcased the superior performance of smoothing splines compared to the local linear

estimator. Additionally, the proposed generalized smoothing spline offers a valuable tool for

imputing missing data in cases where the assumption of linear regression imputation is not

applicable.

1.2.2 Adjusted confidence band for Complex Surveys

Zhang, Mao, and Cheng (2016) extended the development of confidence bands by Zhang and

Lu (2008) from the independent and identically distributed (iid) case to complex surveys, and

3



investigated their asymptotic properties. The proposed confidence bands are constructed in

the form of m̂(x) ± c · lα(x), where m̂(x) represents the estimated mean, c is an adjusted

constant that needs to be estimated to expand the confidence band to account for bias, and

lα(x) is a bound. To derive these estimators, we incorporated both the sampling weights

and kernel weights.

To estimate the constant c, simulation studies were conducted. A grid of equally spaced

points, ci for i = 1, 2, ..., 1000, ranging between 1 and an upper bound of c, was created. A

sequence of binary responses, hi, was generated corresponding to 1 if the confidence band

included the true mean and 0 otherwise. A logistic regression model was then employed to

fit the data {(hi, ci)} for i = 1, 2, ..., 1000 in order to obtain an estimate of c.

One potential application of the confidence bands is a lack-of-fit test. For instance,

suppose we want to test a parametric linear null hypothesis against a nonparametric alter-

native. By examining whether the regression function under the null hypothesis is entirely

contained within the confidence band, we can make a decision to either reject or accept the

null hypothesis based on the test results.

1.2.3 Nonparametric Regression Estimators in Dual Frame Surveys

In the field of survey research, I have also worked extensively on dual frame surveys. Tra-

ditionally, large-scale surveys rely on a single sampling frame, which consists of a list of

population members used to select the sample. However, despite the U.S. Census Bureau

providing an excellent frame for surveys like the American Communities Survey, it is im-

portant to note that even the Census frame has limitations and may not accurately capture

the entire population. Many organizations conducting surveys do not possess the extensive

resources available to the Census Bureau. As the population changes and new data collection

methods emerge, relying solely on a single frame may lead to the exclusion of certain seg-

ments of the population. For example, the increasing number of individuals who primarily

or exclusively use cell phones has rendered surveys conducted solely via landline telephones

biased and incomplete.

To achieve better coverage of the population of interest and reduce survey costs, there is a

growing recognition of the need to employ dual frame surveys. In such surveys, independent

samples are drawn from two or more overlapping sampling frames. The combined frames

encompass multiple domains, including domain A, domain B, and the overlapping domain

AB, as illustrated in Figure 1. By utilizing two frames, dual frame surveys aim to capture

a broader representation of the target population and mitigate coverage biases inherent in

single frame surveys.
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Figure 1: Frames A and B are both incomplete but overlapping

Current research on dual frame surveys primarily focuses on estimating population totals

and means. However, in applications such as economic and health surveys, there is often a

need to explore relationships among variables, predict new observations, or impute missing

values. While linear regression has been discussed in the context of dual frame surveys, it

may not adequately capture the complex relationships present in the data.

In a pioneering work on dual frame surveys, Lu, Fu, and Zhang (2021) developed three

nonparametric regression estimators and examined their asymptotic properties. Our ap-

proach involves transforming the two independent samples into a pseudo single sample by

applying adjusted weights. The weights of elements from the overlapping domain (ab) and

frame A are adjusted by multiplying θ, while the weights of elements from the overlapping

domain (ab) and frame B are adjusted by (1− θ). This adjustment is necessary due to the

overrepresentation of the overlapping domain.

A key challenge is to determine the optimal estimates of θ for the overlapping domain and

the bandwidth h for nonparametric regression. To address this, we employed the concepts of

Pseudo Maximum Likelihood (Skinner & Rao, 1996) and cross-validation to derive estimates

through entirely data-driven methods. Additionally, asymptotic properties were examined

under regularity conditions. Simulation results demonstrated the effectiveness of all the

proposed methods.

While this research was conducted within the context of survey sampling, the developed

techniques can also be applied to other scenarios where data can be combined from two

independent sources. Furthermore, these methods have the potential to be extended to

situations involving more than two data sources.
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1.2.4 Neyman Smooth Type Goodness-of-Fit Tests in Complex Surveys

In the field of categorical data analysis for complex surveys, several goodness-of-fit (GOF)

tests have been developed to assess the adequacy of models. These include Wald’s test,

Fay’s jackknifed chi-squared test, Rao and Scott’s first and second order corrected tests,

and others. However, one limitation of these tests is their lack of sensitivity to slow-varying

probabilities. To illustrate this, we can consider an example from Christensen (1997) where

a dataset captured information about race, sex, age, and opinions on legalized abortion. The

research interest was in testing the hypothesis of no difference in age groups among nonwhite

families supporting legalized abortion. Interestingly, despite observing a decreasing trend in

the rate of support for legalized abortion among older age groups, both the first and second

order corrected tests failed to reject the null hypothesis. This example highlights the need

for more sensitive tests that can capture subtle variations in probabilities over different

categories or groups.

To address these limitations, Lu, Zhou, Zhang, and Christensen (2021) extended Ney-

man smooth-type GOF tests to complex surveys. We began by replacing the estimators

used in the independent and identically distributed (iid) case with estimators incorporating

survey weights. We then introduced basis functions that satisfy orthogonality conditions

and employed Fourier transformation to express the test statistic as a sum of a function

of the Fourier coefficients. The challenge was to find the optimal estimate of the order q

that captures the most information within the first q components. This was achieved by

minimizing the mean squared errors through data-driven methods.

Under regularity conditions specific to survey data, we rigorously derived the asymp-

totic distributions and properties of the Fourier coefficients and test statistics. Simulation

studies demonstrated that our proposed methods exhibited improved statistical power while

maintaining excellent control over type I error, particularly in cases with slow-varying prob-

abilities. This highlights the advantages of our approach compared to the first and second

order corrected tests.

In summary, our work made significant contributions to the field of categorical data

analysis for complex surveys by developing Neyman smooth-type GOF tests with improved

statistical power and enhanced sensitivity to slow-varying probabilities.

1.3 Extension in technical analysis

Technical analysis, often referred to as “charting,” is an investment approach that leverages

the analysis of trends in financial markets to make strategic buy and sell decisions with the
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aim of maximizing profits. Traditionally, technical analysts have relied on their visual ability

to recognize patterns when presented graphically. However, in recent years, there has been

a growing interest in applying statistical tools, such as nonparametric kernel regression, to

develop systematic and automated approaches for technical pattern recognition. Wang and

Zhang (2012) introduced a comprehensive data-driven algorithm for technical analysis that

incorporated nonparametric local linear estimators. This algorithm aimed to enhance the

objectivity and efficiency of technical analysis by leveraging statistical techniques for pattern

identification and decision-making in financial markets.

1.3.1 Technical analysis with smoothing splines for bitcoin prices

My interest in technical analysis extends to the Bitcoin market, which is the world’s first

decentralized digital payment method. Bitcoin has gained recognition and acceptance as a

decentralized digital currency and a store of financial value. However, the cryptocurrency

market differs from traditional markets due to its global and 24/7 trading nature. Unlike

traditional markets, traders are not limited to specific timeframes, and individuals and busi-

nesses can engage in global trading at any time. As a result, trading algorithms have become

increasingly popular, with a growing share of trading being conducted by trading robots.

Miller, Yang, Sun, and Zhang (2019) introduced smoothing splines to analyze the Bitcoin

market, specifically aiming to test the effectiveness and profitability of certain technical

analysis patterns in this relatively new market.

We collected data from the Global Digital Assets Exchange (GDAX), specifically focusing

on Bitcoin prices throughout 2018, with price observations recorded every minute. A Python

program was developed to gather the data, which were then stored in a Structured Query

Language (SQL) local server using PHPMyAdmin. The data were subsequently imported

into R for computation and simulation purposes. Six different technical analysis patterns,

such as Moving-Up-Stream and triangle bottoms, were considered in the study. Smoothing

splines were employed to reduce noise in the price movements, facilitating the identification

of patterns on the smoothed curve.

For example, to identify the triangle bottom pattern, a window of data from every 35

minutes was fitted using smoothing splines. The smoothed data provided local minimum

and maximum closing price values denoted by E1, E2, E3, E4, and E5, which were necessary

for pattern identification. E5 is the closest extreme point to the end of the time subinterval

being fitted. If E1 represented a minimum and satisfied the conditions E1 < E3 < E5

and E2 > E4, the pattern was recognized as a triangle bottom, as illustrated in Figure 2.

This pattern would then generate a buy signal. We also proposed a method to evaluate
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the effectiveness of the strategic trading algorithm. We found that using smoothing splines

to identify technical analysis patterns, combined with strategies based on these patterns,

yielded returns that significantly exceeded the results of unconditional trading strategies.

Figure 2: Price pattern: Triangle Bottom

In summary, the study applied smoothing splines to analyze the Bitcoin market, specif-

ically examining the effectiveness of various technical analysis patterns. The findings sug-

gested that using smoothing splines for pattern identification and implementing strategies

based on these patterns resulted in returns that outperformed unconditional trading strate-

gies.

1.4 Learning multiple tasks with kernel methods

Spline smoothing is indeed a viable approach for single-task (single-sample) kernel learning.

Multitask learning (MTL) is an interesting extension of the kernel approach, aiming to

leverage information from multiple related tasks to improve the learning process. In MTL,

there are n tasks/samples, each with a different size m1,m2, . . . ,mn, and corresponding

functions f1, f2, . . . , fn. The objective of MTL is to estimate f1, f2, . . . , fn simultaneously by

minimizing:
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1∑n
j=1mj

n∑
j=1

mj∑
i=1

L(yji, fj(xji)) + γJ(·), (2)

Here, yji represents the ith observation within the jth sample. The term J(·) represents a
penalty term that encourages a balance between individual task functions and their average.

The standard single-task kernel methods, such as support vector machines and regular-

ization networks, have been extended to MTL using linear kernels. However, not all data sets

can be explained well by linear hyperplanes. To incorporate nonlinearity, Miller and Zhang

(2023) developed a model for MTL that incorporates both parametric and nonparametric

effects for each task in an additive manner. This approach provides practitioners with flex-

ibility in modeling tasks in a customized manner, leading to increased model performance

compared to other modern multi-task methods while maintaining a high degree of model

interpretability. The proposed MTL algorithm also incorporates radial basis functions for

support vector machine to handle nonlinearity. We leveraged parallel computing techniques

to enhance the computational efficiency of our algorithm.

With the rise of big data analysis and deep learning, updating traditional statistical

learning approaches becomes crucial. While computational scientists often focus on testing

and prediction error, statistical justification remains essential for models and algorithms. In

the work of Evgeniou, Micchelli, and Pontil (2005), they applied support vector regression

with a multi-task linear kernel to the Inner London Education Authority (ILEA) dataset.

However, the explained variance on the test data was only around 34%, and some tasks

even yielded negative or zero explained variance when evaluated individually on separate

test sets. From a statistical perspective, negative or zero explained variance is unacceptable

as it indicates that the suggested model performs worse than a mean model.

To address these issues, Miller and Zhang (2023) proposed new methods for statistical

task diagnostics. Our approach allows for the identification and remedy of outlier tasks

based on task-specific performance metrics and their empirical distributions. The frame-

works we developed were evaluated on the benchmark ILEA dataset and showed significant

improvement over other modern multi-task learning methods.

2 Computational and Applied Statistics

I have gained experience working on a diverse range of problems in computational and applied

statistics. One of my areas of focus has been the development of parametric bootstrap

tests and an R package for conducting heteroscedastic analysis of variance in the case of
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unbalanced designs (HeteANOVA). Additionally, I have explored the application of bootstrap

and objective Bayes testing methods to address heteroscedastic analysis of variance. These

approaches have proven valuable for robust inference in the presence of heteroscedasticity.

I have also delved into general inference problems in computational statistics, including

topics such as recursive estimation of time-average variance constants through prewhitening,

estimation of correlation coefficients in bivariate log-normal distributions for which the log-

arithm of the measurements are normally distributed, and estimation of shape parameters

in useful family of distributions known as skew normal models.

Another topic I have focused on is developing tests for the median of survival curves,

which is particularly useful when dealing with the asymmetry survival data. Comparing

survival medians instead of the entire curves is often preferable, especially when there are

censored observations. In this regard, we have proposed efficient nonparametric tests specif-

ically tailored for comparing survival medians, with a focus on small sample sizes that are

common in pharmaceutical experiments.

Furthermore, I have successfully improved several statistical methodologies. In other

work, I have applied the generalized variance function to enhance longitudinal surveys es-

timators, refined classical Shewhart R and s control charts, and developed random forest

regression estimators.

2.1 Simultaneous confidence intervals

Analysis of variance (ANOVA) is a versatile statistical technique that finds applications

in various fields such as sociology, education, medicine, psychology, and economics, among

others. One illustrative example involves studying different weight loss methods, namely

dieting, exercising, and a combination of dieting and exercising. ANOVA is commonly

employed to assess the equality of group means through an overall test and to perform

pairwise multiple comparisons (PMC) to explore differences between individual group means.

In the presence of groups with unequal variances and unbalanced amounts of data, tradi-

tional overall and PMC tests are ineffective. Zhang (2015a, 2015b) introduced computational

PMC algorithms for one-way and two-way HeteANOVA problems. Building on this work,

Alver and Zhang (2021a, 2021b) as well as Zhang (2021) developed Parametric Bootstrap

(PB) based solutions for multiway HeteANOVA problems. We now discuss this work in more

detail.
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2.1.1 Parametric bootstrap tests for HeteANOVA

We present a three-way Heteroscedastic Analysis of Variance (HeteANOVA) model that con-

siders unequal population variances. The model involves observations Yijk1, Yijk2, . . . , Yijknijk

from group ijk with a size of nijk. Here, i = 1, . . . , a, j = 1, . . . , b, and k = 1, . . . , c. The

population variances are denoted by σ2
ijk. The full ANOVA model is expressed as:

Yijkm = G+ Ai +Bj + Ck + ABij + ACik +BCjk + ABCijk + ϵijkm,

In this model, G represents the grand mean, A, B, and C represent the main factor effects,

AB, AC, and BC represent the two-way interaction terms, and ABC represents the three-

way interaction term. The subscript m = 1, . . . , nijk identifies a specific observation within

the group, and ϵijkm
iid∼ N(0, σ2

ijk) represents the error term.

In the presence of unequal variances and unbalanced data, traditional overall and pairwise

multiple comparison (PMC) tests are ineffective in HeteANOVA. Alver and Zhang (2021a,

2021b) as well as Zhang (2021) developed a PB-based solution for multiway HeteANOVA

problems. This solution comprises an overall test and a PMC procedure, incorporating six

PB algorithms with one algorithm illustrated Heteroscedastic. A visual representation of

these algorithms can be found in Figure 3.

The main idea of our approach is to use the parametric bootstrap method to simulate

the distribution of the test statistics, which involves the standardized sum of squares. For

instance, when testing the three-way interaction term, the null hypothesis (H0ABC) assumes

that ABCijk = 0 for all i = 1, ..., a, j = 1, ..., b, k = 1, ...c, whereas the alternative hypothesis

(HαABC) suggests that ABCijk ̸= 0 for some i, j, k.

Let Σ be a diagonal matrix with entries σ2
111/n111, σ

2
112/n112, ..., σ

2
abc/nabc, where nijk

denotes the sample size for each combination. Define Jn as a column vector of n ones, In as

an n×n identity matrix, and XABC as the design matrix formed by combining the following

components: Jabc, Ia ⊗ Jbc, Ja ⊗ (Ib ⊗ Jc), Ja ⊗ (Jb ⊗ Ic), Iab ⊗ Jc, Ia ⊗ (Jb ⊗ Ic), and Ja ⊗ Ibc,

where ⊗ represents the Kronecker product. Let Ȳ be a vector of the group means obtained

from different factor levels, i.e., Ȳ = (Ȳ111, Ȳ112, ..., Ȳabc)
′. Additionally, let S be the diagonal

matrix of the group sample variances, S = diag(s2111/n111, s
2
112/n112, ..., s

2
abc/nabc).

Under the null hypothesis, a suitable test statistic for H0ABC is the standardized sum of

squares for the three-way interaction. This statistic follows a chi-square distribution with

degrees of freedom equal to (a− 1)(b− 1)(c− 1).

Ȳ TΣ−1Ȳ − Ȳ TΣ−1XABC(X
T
ABCΣ

−1XABC)
−XT

ABCΣ
−1Ȳ ∼ χ2

(a−1)(b−1)(c−1) (3)
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Biggest Model: E(Y) = A+B+C+AB+AC+BC+ABC

Test ABC term Using Alg. 1
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H0?

Test Two-Way Terms Using Algorithm 2
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Multiple Comparisons (Zhang 2015-1)
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Test Main Effects Using Algorithm 3
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if Not

Signif
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no

yes

Figure 3: Flowchart: Three-Way ANOVA Testing Using Parametric Bootstrap
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The test statistic can be estimated by:

S̃I = Ȳ TS−1Ȳ − Ȳ TS−1XABC(X
T
ABCS

−1XABC)
−XT

ABCS
−1Ȳ . (4)

To develop the parametric bootstrap (PB) variable, we assume without loss of generality

that E(Y) = 0. For a given set of (ȳ111, ȳ112, ..., ȳabc; s
2
111, s

2
112, ..., s

2
abc)), we can model ȳBijk as

independent normal random variables with mean 0 and variance s2ijk/nijk, while S
2
Bijk follows

a scaled chi-square distribution with nijk−1 degrees of freedom, i.e., S2
Bijk ∼

( s2ijk
nijk−1

)
χ2
nijk−1,

i = 1, ...a, j = 1, ..., b, k = 1, ...c. Let ȲB denote the vector (ȳB111, ȳB112, ..., ȳBabc)
T , and SB

be the diagonal matrix diag(s2B111/n111, s
2
B112/n112, ...s

2
Babc/nabc).

We construct the PB pivot variable by replacing Ȳ with ȲB and S with SB in the test

statistic (4). This results in the following expression for the PB pivot variable:

S̃IB = Ȳ T
B S

−1
B ȲB − Ȳ T

B S
−1
B XABC(X

T
ABCS

−1
B XABC)

−XT
ABCS

−1
B ȲB. (5)

To assess the significance of the test, we compare the observed test statistic s̃I with

the random distribution of the PB pivot variable S̃IB which is evaluated by simulations. If

P (S̃IB > s̃I) < α for a given significance level α, we reject the null hypothesis H0ABC . The

probability P (S̃IB > s̃I) can be estimated using Algorithm 1, as described below:

Algorithm 1:

For a given set of (n111, n112, ..., nabc), (ȳ111, ȳ112, ..., ȳabc), and (s2111, s
2
112, ...s

2
abc), compute

the observed test statistic s̃I using equation (4) and the sample data.

For k = 1, ...,m:

Generate ȳBijk ∼ N(0, s2ijk/nijk) and S2
Bijk ∼

(
s2ijk

nijk−1

)
χ2
nijk−1, where i = 1, ...a, j =

1, ..., b, k = 1, ...c.

Compute S̃IB using equation (5).

If S̃IB > s̃I , set Qk = 1.

Compute the Monte Carlo estimate of the p-value, 1
m

∑m
k=1Qk. Other algorithms can be

derived similarly.

2.1.2 R package “pbanova”

To facilitate the application of the parametric bootstrap (PB) methods proposed by Alver

and Zhang (2021a, 2021b) and Zhang (2021) for HeteANOVA analysis, we have developed

an open-source supplementary R package called “pbanova”. This package provides a user-

friendly interface, allowing researchers to easily use the PB techniques in their analyses. With

the “pbanova” package, researchers can apply the PB methods to address HeteANOVA
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problems effectively. Additionally, the methods available in the “pbanova” package can

also be used to analyze classical ANOVA problems with equal variance assumptions. By

enhancing the accessibility and practicality of PB methods, the “pbanova” package serves

as a valuable tool for researchers dealing with HeteANOVA problems and contributes to the

advancement of statistical analysis in this field.

2.1.3 Relationship between PB and objective Bayesian (OB) approaches

Zhang, Christensen, and Pesko (2021) investigated the relationship between the parametric

bootstrap (PB) and objective Bayesian (OB) approaches for testing the equality of factor

level means in one-way HeteANOVA. The OB approach utilizes Bayes’ Theorem to obtain

posterior distributions of parameters by combining a non-informative or flat prior distribu-

tion with the likelihood function. Objective priors are chosen to have minimal influence

on the posterior analysis, allowing the data to speak for themselves as much as possible.

Interestingly, although the PB and OB tests may appear different, it has been demonstrated

that they are asymptotically equivalent.

Simulation studies conducted for one-way heteroscedastic ANOVA indicate that both the

PB and OB tests effectively control the type I error of the overall mean tests and exhibit

reasonable statistical power when group sizes are not small. This research serves as a catalyst

for further investigations, such as examining the robustness of PB and OB tests to outliers,

exploring the equivalence of PB and OB methods for multi-way ANOVA problems, and

studying their performance under special designs like the randomized complete block design

and split plot design. These avenues of inquiry aim to extend our understanding of the

applicability and properties of PB and OB approaches in various statistical settings.

2.2 Inferences

I have worked on statistical inference for various problems, including the correlation coef-

ficient of the bivariate lognormal distribution, the medians of survival curves, the shape

parameter of a skew normal distribution, and the variance of survey data.

2.2.1 Generalized confidence interval and hypothesis tests for the correlation

coefficient

The Pearson product-moment correlation is a widely used measure to assess the linear re-

lationship between two continuous random variables. However, financial data often exhibit

skewness, requiring the use of skewed distributions such as the log-normal distribution. When
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studying two financial measures like silver and gold returns, the log of a bivariate normal

distribution is suitable. A question of interest is determining the correlation between silver

and gold. Additionally, in bear markets where both gold and silver prices decline, it be-

comes crucial to investigate whether the correlation between the two assets differs from the

past. However, inference on the correlation coefficient of a bivariate log-normal distribution

poses challenges due to skewness. To address this, Zhang and Chen (2015) developed gen-

eralized confidence intervals and hypothesis tests for the correlation coefficient, extending

the results to compare two correlations based on independent samples. Simulation studies

demonstrate the effectiveness of these methods, even for more general sample scenarios. Our

future plans involve extending this work to inference on the correlation coefficient of more

general multivariate log-normal distributions (Zhang & Chen, 2021).

2.2.2 A nonparametric test to compare survival medians

Survival data often exhibit skewness, making the median of a survival curve a preferred

measure of central tendency over the mean. Comparing survival medians, rather than means,

is desirable for data analysis. Several nonparametric methods have been proposed to test for

equality of survival medians in the presence of skewness. Chen and Zhang (2016) introduced

a nonparametric test for comparing several survival medians. Our proposed test statistic

measures the deviation from the survival median time to a weighted average of all survival

median times. Under the null hypothesis of equal medians for K survival curves (K ≥ 2), it

was proven that the test statistic follows an asymptotic chi-square distribution with K − 1

degrees of freedom. One limitation of existing methods is the inflation of the type I error rate

due to the underestimation of variance using the standard approach based on Greenwood’s

formula. Consider the variance formula V (Y ) = E[V (Y |X)] + V [E(Y |X)]. The Greenwood

estimate is an approximation of the first term E[V (Y |X)], while ignoring the second term

V [E(Y |X)].

In our research, we address the issue of underestimation of variance in existing methods

by employing the Greenwood estimate for the first term of the variance, and approximate

the second term by bootstrap methods. The bootstrap approximation offers an asymptotic

approximation, where the estimated variance has an order of n−2
i , with ni representing the

sample size associated with the ith estimated survival curve. Consequently, for large samples,

the second term of the variance V (Y ) converges to 0, and the estimator of V (y) converges to

that of Greenwood’s approach. This observation sheds light on why the tests in the literature

perform well for large samples but exhibit inflated type I errors for small samples (Chen &

Zhang, 2016). Simulation studies demonstrate that the proposed test effectively controls the
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type I error rate, even for small samples—a promising feature given the often limited sample

sizes in pharmaceutical and other experiments.

2.2.3 Estimators of the shape parameter for a scalar skew normal model

Skew normal distributions have gained significant attention due to their appealing math-

ematical and statistical properties, as well as their flexibility in fitting data. These dis-

tributions find wide applications in various fields, including selective sampling, stochastic

frontier models, compositional data, and financial markets, where the assumption of normal-

ity is inadequate. The skew normal distribution, denoted as Y ∼ SN(µ, σ, λ), has a density

function

f(y;λ, µ, σ) =
2

σ
ϕ(
y − µ

σ
)Φ(λ

y − µ

σ
), (6)

where ϕ and Φ represent respectively the density and cumulative distribution functions of

a standard normal distribution with mean 0 and standard deviation 1. The parameters µ,

σ, and λ control the location, scale, and shape of the distribution, respectively. It is worth

noting that the skew normal distribution reduces to the normal distribution when the shape

parameter λ is set to 0. The shape parameter has a somewhat complicated relationship to

the skewness of the distribution.

One challenge associated with the skew normal model is the difficulty in estimating

the shape parameter. In cases where the sample size is moderate or small, the maximum

likelihood estimator of the shape parameter can be infinite. Moreover, existing estimators

for the shape parameter in the literature suffer from significant bias even for moderate

sample sizes. To address this issue, Zhang and Liu (2017) proposed three estimators for

the shape parameter in a scalar skew normal model. The first two estimators employed a

bias correction approach, while the third estimator was derived by solving a modified score

equation. Simulation studies demonstrated that the proposed estimators exhibit smaller bias

compared to the existing estimators in the literature, particularly for small and moderate

sample sizes. This research provides more reliable and accurate estimation methods for the

shape parameter in skew normal distributions.

2.2.4 Longitudinal generalized variance functions for survey data

In the field of survey research, my interest has expanded to include an extension of generalized

variance functions (GVFs) to longitudinal data analysis. Generalized variance functions are

widely used to generate convenient estimates of variances for large-scale surveys, such as

the Census Bureau’s Current Population Survey and the Canadian Labour Force Survey.
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Traditionally, GVFs in survey research are constructed by pooling data from a specific time

period, typically one year, under the assumption of a constant population throughout that

period. However, this approach overlooks the fact that the size of the population may change

over time, leading to substantial variation in the standard errors of the estimators. Moreover,

with access to longitudinal data, it is possible to use multiple years of data to estimate the

variance of the estimators.

To overcome these limitations, Zhang, Cheng, and Lu (2019) introduced the concept of

longitudinal generalized variance functions (LGVFs), which incorporate a time effect into the

modeling framework. The LGVFs account for the fluctuations in population size over time

and use a larger amount of data for estimation, resulting in more accurate variance estimates

for longitudinal data. The study investigates the asymptotic properties of the estimators,

which involve linear combinations of cluster means obtained from stratified two-stage cluster

samples.

The implementation of these LGVF methods to the Current Population Survey demon-

strates their effectiveness in producing proper standard errors for longitudinal data. By

considering the changing population size over time, and using a larger amount of data, the

LGVFs significantly improve the accuracy of variance estimation, thereby enhancing the

reliability and validity of survey research findings in longitudinal settings.

2.3 Methodology improvement

2.3.1 Recursive estimation of time-average variance constants through prewhiten-

ing

The time-average variance constant (TAVC) plays a significant role in various time series

inference problems, such as unit root testing and statistical inference of the mean. Consider

a stationary process (Xi), i ∈ Z, with a mean µ = E(Xi) and finite variance, and let

γ(k) = cov(X0, Xk), k ∈ Z, be the covariance function. An estimate of µ can be obtained

by taking the sample mean X̄n = 1
n

∑n
i=1Xi. Under suitable conditions, as n increases, X̄n

converges in distribution to a normal distribution:

n1/2(X̄n − µ) = n−1/2

n∑
i=1

(Xi − µ) −→ N(0, σ2),

where σ2 represents the TAVC, long-run variance, or asymptotic variance parameter. In a

stationary process, the TAVC is the sum of all covariances (and is a multiple of the spectral

density at 0). In many applications, it is a good idea to update the estimate of σ2 sequentially
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as new observations are accumulated. Wu (2009) proposed an efficient recursive algorithm to

compute the TAVC, resulting in a memory complexity of O(1) and computational complexity

scaling linearly with n.

Prewhitening is a technique used to identify a filter that transforms Xi into residuals

or white noise ei that are serially independent or free of autocorrelation. The TAVC of

the prewhitened series {ei}, i ∈ Z, is denoted as σ2
e . The estimation of σ2

e can be more

accurate than that of σ2. Zheng, Jin, and Zhang (2016) applied an AR(1) prewhitening

filter to construct a recursive estimate of the TAVC. By using the AR(1) prewhitening filter,

we achieved substantial improvements in efficiency under certain circumstances. The paper

provides theoretical conditions for deciding whether prewhitening is necessary or not. The

memory complexity of O(1) is maintained, and the accuracy of the estimate is enhanced, as

supported by both theoretical results and simulation studies.

2.3.2 Exploring Market Dynamics in Cryptocurrency and Quality Control Tech-

niques in Industrial Settings

In our research titled “Reversion and Location Trends in the Bitcoin Market” (Lewinski,

Yang, Chen, & Zhang, 2019), we explore the dynamics of the cryptocurrency market, par-

ticularly Bitcoin, and investigate whether certain phenomena observed in traditional stock

markets also exist in cryptocurrency markets. Specifically, we examine the application of

the 75 percent reversion rule in cryptocurrency markets.

Using local linear regression, we find that active market trading, as indicated by peaks in

the fitted regression curve, tend to occur around the opening or closing times of traditional

markets. Additionally, we observe that the stance of governments on cryptocurrencies and

news events can impact specific regions and potentially have a ripple effect on other regions.

These insights can assist investors and institutions in understanding the cryptocurrency

market and making informed decisions based on the timing of market activity in different

geographic locations.

In another aspect of my research, I focus on variability charts commonly used in industrial

quality control, such as the R control chart (R chart) and the s control chart (s chart), ini-

tially introduced by Shewhart in 1931 (Shewhart, 1931). Zhang (2014b) proposed improved

versions of these charts that provide more accurate approximation of control limits. This

improvement is achieved by incorporating cumulative distribution functions of the sample

range and standard deviation. These enhanced control charts offer better performance in

monitoring and maintaining the quality of industrial processes.
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2.3.3 Mixed model and extensions

Mixed models, involving models with some effects being random rather than fixed, have

been at the forefront of my research interests, driving my exploration into their various

aspects. In my initial investigation (Lu & Zhang, 2010), I focused on the problem of testing

null hypotheses concerning the variance component in a balanced one-way random effects

model. Building upon this foundation, my ongoing research aims to expand these findings

to encompass unbalanced designs, addressing a broader range of practical scenarios. I’m

pleased to share that my work has garnered attention from fellow researchers, indicating its

significance and potential impact. Notably, one of the Ph.D. students in our department

has further extended this research to Generalized Split-plot design models, broadening its

applicability. Additionally, researchers from the field of biostatistics have expressed keen

interest. I am excited to continue this line of inquiry and collaborate with fellow scholars to

advance my understanding in this area.

3 Applications

Besides developing statistical theory, methodology and algorithms, I am also interested in

applying statistical theory and methods to solve health care and financial engineering prob-

lems. This work can be seen in Zhang et al. (2011) , X. Liu, Li, Zhang, Sheng, and Xu

(2007) and Zhang (2012b).

3.1 Application of Statistical Theory and Methods in Health Care

In the field of health care, my research focuses on applying statistical theory and meth-

ods to understand and solve problems related to human diseases. Specifically, I have been

involved in studies investigating genetic mutations in human endometrial cancer and the

characterization of serum low-molecular weight proteins/peptides in liver injury patients.

3.1.1 Genetic Mutations in Human Endometrial Cancer

With the advancements in genome sequencing technology, my research aimed to unravel

the genetic basis of human endometrial cancer. Through transcriptome sequencing on an

endometrial tumor paired with normal cervical tissue, Zhang et al. (2011) developed a phy-

logenetic approach to characterize individual genetic mutations in cancer cell proliferation

within a single resected patient tumor. By assuming that all cells have the same mutations
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from their parents and using the highest frequency mutation to split the cluster, the method

facilitated the identification of mutations belonging to each group. The resulting tree model

provided a clear display of the order of genetic mutations, making it more interpretable and

meaningful compared to classical tree models. Using this approach, we successfully identi-

fied five ubiquitous mutations presumed to occur in the cancer founder cell of the tumor,

and may collectively play critical roles in endometrial oncogenesis. Further testing in 10

additional endometrial tumors failed to show overlapping mutations in the cancer founder

cells, indicating the lack of a single common oncogenic pathway for these endometrial tu-

mors. The effects of individual mutations in cancer cell proliferation were calculated based

on descendant cell number and time span since acquiring each mutation.

3.1.2 Characterization of Serum Low-Molecular Weight Proteins/Peptides in

Liver Injury Patients

In collaboration with other researchers, we conducted a study that aimed to character-

ize serum low-molecular weight proteins/peptides associated with liver injury using factor

analysis with surface-enhanced laser desorption ionization-time of flight-mass spectrometry

(SELDI-TOF MS) data (X. Liu et al., 2007). The SELDI-TOF MS data posed challenges

due to its high dimensionality and the need to address correlations among peaks. By com-

paring mass spectra of the hepatitis group with those from the control group, we identified 43

peaks associated with liver function impairment. Through factor analysis, we extracted four

common factors (cholestasis, coagulation, attenuation, and 9292) that provided insights into

the underlying processes related to liver injury. Notably, the factors related to coagulation

disorders (coagulation and 9292) in liver injury shed light on the role of serum low-molecular

weight proteins/peptides in coagulation processes. Additionally, we proposed plausible in-

terpretations for some undetermined peaks, contributing to the understanding of liver injury

mechanisms.

3.2 Application of Statistical Theory and Methods in Financial

Engineering

In addition to health care applications, my research extends to the field of financial engineer-

ing. Specifically, I have conducted investigations into the optimal geometric mean returns

of stocks and options and their relationship to the Kelly criterion (Zhang, 2012b).

In this study, I proved that the optimal geometric mean returns of a stock and its corre-

sponding option are the same according to the Kelly criterion. This result was demonstrated
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using both the binomial option pricing model and continuous stochastic models with a self-

financing assumption. Through simulation studies, the approximate validity of this relation-

ship was established for the continuous option pricing model. Furthermore, for the discrete

case, I showed that the ratio of the optimal fractions of a stock and its option is unrelated to

the probability distribution of the return. This implies that, we can use a small amount of

options to replace the underlying asset without changing the optimal geometric mean return

and knowing the probability distribution of the return. Hence, in practice, either there are

sure win chances or the price of options are more expensive than their theoretical values.

Otherwise, one should always hold more uncorrelated options instead of stocks.

By conducting research in both health care and financial engineering domains, I aim

to contribute to the advancement of statistical theory and methods while addressing real-

world challenges in these fields. These applications demonstrate the practical relevance and

potential impact of statistical approaches in understanding diseases, identifying biomarkers,

and making informed financial decisions.

4 Ongoing research

In the following sections, I will provide an overview of my current work, which includes

collaborative research with the National Center for Health Statistics (NCHS), as well as my

future research directions in survey sampling and missing data imputation.

4.1 A general procedure for evaluating models and ensemble sup-

port vector regression

In addition to the classical goodness-of-fit (GOF) and lack of fit tests for model assessment, a

commonly used measurement for evaluating model performance is the mean squared test set

error or prediction error (PE). This approach involves randomly dividing the data into two

parts: a training set and a test set. The training set is used to build models, while the test

set is used to evaluate the model’s performance based on the PE. However, from a statistical

perspective, relying on the PE from a single test set may introduce bias, and using PE as

the sole measure of model fit without considering other diagnostics may be insufficient.

To overcome this limitation, Zhang and He (2022(a)) introduces a comprehensive frame-

work and a general procedure for assessing the performance of various regression methods in

the context of big data. The key concept behind this procedure involves randomly partition-

ing the data into multiple training and test sets. By applying the regression method to each
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training set and calculating the PE on corresponding test sets, an average PE is obtained

by averaging the PEs from different test sets. This approach provides a robust and reliable

measure of the performance of different regression methods, allowing for a comprehensive

comparison and evaluation of their effectiveness in handling big data.

4.1.1 Algorithm for the general procedure

Suppose we are interested in comparing r different methods or models. The proposed Monte

Carlo simulation algorithm for conducting these comparisons is as follows:

Algorithm 1: General Monte Carlo simulation procedure

Randomly create K splits and save the splits to K different files
for each split do

read the split from the data file;
for each method (1,2,..., r) do

fit the model with the training data;
use the fitted model to do prediction on the testing data;
compute the measures of prediction performance;

record the results to the output file;

Use statistical tools to analyze the results in the output file;

Algorithm 1 can be carried out by parallel computing.

4.1.2 Extended Paired t-test

We used the binomial test and paired t-test in the general procedure. In the realm of machine

learning, comparing two methods based on prediction errors (PEs) by averaging them across

multiple test sets is a common practice. However, we hold a different perspective on this

matter. We propose extending the paired t-test to compare methods based on the same

test set, followed by estimating the average difference and testing whether the value 0 falls

within the confidence interval. To demonstrate this extended paired t-test, we outline the

procedure as follows: let PE
(1)
i and PE

(2)
i denote the prediction errors obtained from model

1 and model 2, respectively, for the ith test set. We define the PE improvement as

δi = PE
(1)
i − PE

(2)
i , (7)

which serves as a measure for the ith split. We reject the null hypothesis H0 if the confidence

interval for the true PE improvement D = E(δi) is positive. This approach allows us to more

precisely assess the performance difference between the two methods and draw conclusions

based on the inclusion or exclusion of 0 within the confidence interval.
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4.1.3 Ensemble Support Vector Regression (ESVR)

Support vector regression (SVR) is a regression method based on the principles of support

vector machines (SVM) (Vapnik, 1995). It addresses regression problems by using an ϵ-

insensitive loss function, which penalizes data points that deviate from a specified margin ϵ.

SVR incorporates concepts from the theory of reproducing kernel Hilbert space and shares

similarities with other regularization approaches such as ridge regression, cubic smoothing

splines, and thin plate splines. In the field of machine learning, ensemble methods such as

bagging (Breiman, 1996), stacking, and boosting have gained prominence. These methods

enhance predictive performance by combining predictions from multiple models.

Motivated by the principles of SVR and ensemble methods, we have proposed two mod-

ified support vector regression models for regression analysis. Here, we will focus on illus-

trating one of these models: the ensemble support vector regression (ESVR). The ESVR

model combines multiple reduced models in Em (a collection of subsets) to achieve improved

predictive accuracy. Additionally, it helps reduce the spread or dispersion of predictions.

The procedure for h-step ESVR is outlined below:

Algorithm 2: h-step ensemble SVR procedure (ESVR)

for each m do
for each subset in Em do

fit SVR with the training data;
use 10 fold cross-validation to find optimal parameters;
use the model with optimal parameters to do prediction on the testing data;
record the result;

average all the results.

By averaging the results obtained from different subsets and models, the h-step ensemble

ESVR provides a more robust and accurate prediction. The procedure, as described in

Algorithm 2, allows for the selection of optimal SVR models within each subset and accounts

for the variability across different subsets.

4.2 The general information criterion (GIC)

My research has made notable progress in variable selection for regression analysis by intro-

ducing the general information criterion (Zhang & Pleis, 2022(b)). Various criteria, such as

mean squared error, adjusted R2, Akaike information criterion (AIC), Bayesian information

criterion (BIC), and others, are commonly used for model selection. However, none of these

criteria directly measure the model’s predictive power. To address this gap, our research in-

troduces a general information criterion (GIC) that directly quantifies the predictive power
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of models.

Both AIC and BIC add penalty for the number of parameters in the criterion. The larger

the penalty, the less the number of predictors will be selected. Unfortunately, the penalty

from AIC is too small and the penalty from BIC is too big. Therefore, we propose a GIC

to adjust the penalty term so that AIC and BIC provide the lower and upper bounds, i.e.,

AIC and BIC are retrieved when λ = 2 and λ = log(n) respectively,

GIC = n ∗ logSSE
n

+ n+ n ∗ log(2 ∗ π) + λ ∗ h, (8)

where h is the number of predictors, and λ ∈ [2, log(n)].

To determine the optimal value of the parameter λ in a data-driven manner, a grid of λ

values can be set up, such as λ1 = 2, λ2, λ3, . . . , λr = log(n). The selection of λ is based on

minimizing the prediction error, which can be achieved through the proposed Algorithm 1,

i.e., a Monte Carlo simulation algorithm using multiple splits of the data into training and

test sets.

In addition, from Algorithm 1 GIC employs inclusion frequencies as a measure of variable

importance. These frequencies indicate the proportion of times a predictor is selected among

the K models generated from the multiple splits. By analyzing the inclusion frequencies,

variables with high frequencies can be identified as important contributors.

To facilitate the implementation of GIC variable selection, we have developed algorithms

tailored for this purpose. These algorithms enable efficient and flexible variable selection

using the GIC procedure. To demonstrate the effectiveness of GIC, we have applied it to

two real-world examples, illustrating its ability to accurately and reliably identify relevant

predictors when compared to traditional methods such as AIC and BIC.

4.3 Semi-parametric models for small area estimation (SAE) using

machine learning methods

4.3.1 Area level SAE using support vector regression

In the domain of small area estimation, which involves sub-populations or domains with

limited sample sizes for obtaining reliable estimates, my collaborative research with NCHS

has yielded significant advancements.

The Fay-Herriot model for SAE assumes a linear linking function, which may not always

be suitable when dealing with nonlinear relationships. To address this limitation, Zhang

and Pleis (2022(c)) proposed a semi-parametric model for small area estimation (SP-SAE),

which allows for a more general approach by estimating the nonparametric component using
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support vector regression (SVR). Consider m areas i = 1, · · · ,m. The SP-SAE model can

be expressed as follows:

Sampling model: ȳi = Ȳi + ei, where ei ∼ N(0, ψi) and ψi is known.

Linking model: Ȳi = z′aiβ+ f(zbi)+ vi, where zai and zbi are disjoint subsets of zi, f(zbi)

is a smooth function, and vi ∼ N(0, σ2
v).

Combined model: ȳi = z′aiβ + f(zbi) + vi + ei.

The estimation of parameters in the SP-SAE model is accomplished using the back-fitting

(BF) algorithm. This iterative algorithm involves fitting the linear and nonlinear components

of the model repeatedly until convergence is achieved. To assessment the performance of

linear and nonlinear models and emphasize the necessity of a nonparametric model like

SP-SAE, we employed a procedure that incorporates multiple random splits, as well as the

binomial test and paired t-test methods proposed by Zhang and He (2022(a)). This procedure

allows for a comprehensive comparison between the two types of models.

We also conducted an empirical analysis using ACS 2015 health coverage data, comparing

the performance of the direct estimator, linear Fay-Herriot model, and the nonparametric

SP-SAE model. The results showed that the prediction errors of the linear model were

significantly larger than that of the SP-SAE. Moreover, the estimate of σ2
v in the Fay-Herriot

model was larger than that in the SP-SAE model, indicating that adding a nonparametric

component reduces the between-area variation, allowing small areas to borrow strength from

other areas more effectively. Comparisons of coefficients of variation demonstrated that

SP-SAE outperformed Fay-Herriot, while Fay-Herriot outperformed direct estimators. It is

worth noting that SVR was used in this research to estimate the regression function, but

other machine learning methods could also be employed within this framework.

4.3.2 Area and Unit level SAE using random forests

Random forests (RF), introduced by Breiman (2001), have emerged as a powerful nonpara-

metric machine learning tool and have shown competitiveness across various data mining

techniques. RF is particularly effective in handling regression problems when the number of

observations is smaller than the number of predictors, which is often encountered in small

area estimation. Additionally, RF offers the advantage of addressing prediction tasks even

in the presence of missing values in the predictor variables.

In addition to area-level SAE, my ongoing collaborative research with the NCHS aims to

examine unit-level SAE. For this purpose, we propose the use of random forests (RF) and

its bias-corrected variant, known as bias-corrected random forests (BCRF) (Zhang & Lu,

2012), for both area and unit-level estimation.

25



The unit-level model considers each unit j within area i individually, instead of using

summarized totals or means. Let yij represent unit j in area i, where i = 1, 2, · · · ,m and

j = 1, · · · , ni. The total number of units is given by n = n1 + n2 + · · · + nm. The response

vector is denoted as y = (y11, y12, · · · , y1n1 , y21, y22, · · · , y2n2 , · · · , ym1, ym2, · · · , ymnm)
′, and

the corresponding error term is ϵ = (ϵ11, · · · , ϵ1n1 , · · · , ϵm1, · · · , ϵmnm)
′. Let Im be the m×m

identity matrix, 1ni
be a vector of length ni consisting of ones, f = (f1(z), f2(z), · · · , fm(z))′,

and Z = Im ⊗ (1′
n1
,1′

n2
, · · · ,1′

nm
)′, where ⊗ represents the Kronecker product.

We fit the following model:

y = Xβ + Zf + ϵ, (9)

where X is a design matrix related to the linear term structure, and the error term ϵ has

a mean of zero and a block diagonal variance matrix for each area. We plan to tackle the

problem by employing the backfitting algorithm, which enables the estimation of parameters

in the proposed small area model.

One advantage of unit-level SAE is that the vector f = (f1(z), f2(z), · · · , fm(z))′ is esti-
mated using all the unit-level information simultaneously. Each area has its own area-specific

estimator f̂i(z). However, it is possible that model (9) may not adequately explain some

areas when evaluated individually on separate test sets. Therefore, we propose develop-

ing appropriate lack-of-fit tests to identify outlying areas and exploring possible remedial

measures.

4.4 Partially linear model for dual frame surveys

I am working on a semiparametric model for dual frame surveys, which employ a parametric

component to account for the domain effect and a nonparametric component to capture the

underlying regression function. The model is defined as follows:

yij = βi +m(xij) + ϵij, i = a, ab, b, (10)

Here, a, ab, and b represent the three non-overlapping domains within the dual frame survey.

The vector xij = (xij1, . . . xijp)
T contains p covariates corresponding to yij. The unknown

parameter βi is associated with domain i, while the unknown function m(·) ∈ Wm
2 [0, 1]

represents the underlying nonparametric regression function. The error terms ϵij are zero-

mean random variables with a variance-covariance matrix of Σ.

In this model, we assume that the underlying nonparametric regression function m(xij)

is the same across the three domains, while the domain effects βi can differ. This model can

also be employed to test for the presence of a domain effect, i.e., to assess the hypothesis H0 :
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βa = βab = βb. However, there are a few challenges we anticipate when adopting a partially

linear model for complex surveys with dual frame designs. These challenges include the

bias introduced by using adjusted weights in the overlap domain and the boundary problem

associated with each domain. To examine the asymptotic properties of the estimators, we

intend to employ a combined inference framework.

4.5 Exploring Estimation Methods for Missing Data Handling in

Survey Nonresponse

In addition to small area estimation, my research plan includes investigating techniques

for handling missing data, specifically focusing on missing data imputation and weighting

adjustment. Missing data is a common issue in survey practice, and it can lead to biased and

flawed inferences if not addressed appropriately. One common approach to handle missing

data is to impute the missing values using auxiliary variables, while weighting adjustment is

suggested when unit missing occurs.

4.5.1 Imputation by machine learning methods

Several issues need to be considered in missing data imputation research, including survey

design issues, missing response from auxiliary variables, and the evaluation of imputation

methods’ effectiveness. Based on initial studies, I propose three estimators for survey non-

response imputation when auxiliary variables are available. These estimators include the

Support Vector Regression (SVR) estimator (f̂S), the bias-corrected Random Forest (RF)

estimator (f̂RC = f̂R − B̂(X, Y )), and a combined estimator that incorporates both RF and

SVR (f̂θ(x) = θf̂R + (1− θ)f̂S).

To determine the optimal value of θ, we set up a grid of values between 0 and 1. For

each value of θ, we calculate the mean squared PE based on the combined estimator f̂θ(x).

The goal is to find the value of θ that minimizes the mean squared PE, indicating the best

trade-off between the RF and SVR estimators.

The research topics related to these estimators involve investigating the effects of sampling

design and weights, comparing them to existing methods in the literature, and developing a

diagnostic procedure to evaluate the imputation methods, such as assessing prediction error.

4.5.2 Weighting adjustment methods

One challenge in practice is that auxiliary variables are usually available only for sampled

respondents. In such cases, weighting adjustment is suggested. Deville and Sarndal (1992)
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derived a weighting system using a distance measure and calibration equations, and Slud

and Thibaudeau (2009, 2010) adapted the generalized-raking calibration methodology for

nonresponse adjustment. They also proposed linearization-based large-sample variance for-

mulas. However, their weighting adjustment method relies on exact constraints, which I

plan to modify. My plan is to use machine learning methods to optimize the weights, ei-

ther through high-dimensional parametric models or nonparametric nonlinear models, thus

relaxing the exact constraints and enhancing the weighting adjustment process. This aspect

of the research is currently under investigation.
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