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Comparison of difference based variance estimators for
partially linear models

Guoyi Zhang and Yan Lu

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, New Mexico, USA

ABSTRACT
In this research, we evaluated two difference based variance estima-
tors: one by Gasser, Sroka, and Jennen-Steinmetz, and another by
Hall, Kay, and Titterington for use in partially linear models. Under
various settings, we compared power of tests for heteroskedasticity,
and other finite population properties of the estimators using simu-
lation studies. We also proved that under regularity conditions, the
estimator from Hall, Kay, and Titterington provides larger power of
the tests for heteroskedasticity. A real example is given to illustrate
the usage of the estimators.
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1. Introduction

A partially linear model (PLM) is a regression function that contains a parametric linear
component and a nonparametric component that involves an additional predictor vari-
able. Suppose y1, :::, yn are responses, and t is the predictor variable with 0 � t1 <
t2 � � � < tn � 1: A PLM can be written as follows:

yi ¼
Xk
j¼1

uijcj þ f ðtiÞ þ �i, i ¼ 1, :::, n (1)

where c1, :::, ck are unknown parameters; uij’s are known constants; f is an unknown

smooth function; and �i�iidNð0, r2Þ: For example, both indexes: nasdaq composite and
S&P 500 are in the same market environment. Their percentage of return (see detailed

description in Section 4) can be modeled by the estimated smooth function f̂ ð�Þ as the
two green curves in Figure 1. Note that these two green curves are exactly the same,
indicating the same market environment. The indexes’ specific performance is modeled

by
Pk

j¼1 uijcj: Their difference is reflected by the different intercepts.

It is natural to ask questions such as: is the variation of the percentage of return over
time a constant? Are the intercepts of the two indexes significantly different from each
other? To answer these questions, we first need to estimate the variance r2: Difference-
based variance estimators are commonly used in nonparametric regression. A benefit of
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difference-based approaches is that the underlying function does not need to be esti-
mated to obtain a useful variance estimator. Interested readers can refer to Von
Neumann (1941), Rice (1984), Gasser, Sroka, and Jennen-Steinmetz (1986) (GSJS),
Buckley, Eagleson, and Silverman (1988), Hall, Kay, and Titterington (1990) (HKT),
Zhou et al. (2015), Dai et al. (2015), and Lu (2014) etc.
Methods for estimating PLM type models have been studied by Green, Jennison, and

Seheuh (1985), Speckman (1988), Wahba (1990), etc. R. Eubank et al. (1998), and
Klipple and Eubank (2006) extended work from Gasser, Sroka, and Jennen-Steinmetz
(1986) to partially linear models. They developed efficient algorithms to compute fitted
values, regression coefficients, standard errors, smoothing parameter selection criteria
for the Speckman smoothing spline estimator, and proposed an estimator for the
residual variance.
In this research, we apply GSJS and HKT variance estimators to PLMs using results

by R. Eubank et al. (1998), and investigate their performance and properties. In Section
2, we review background knowledge related to the research. In Section 3, we perform
simulation studies to compare performance of GSJS and HKT in PLMs, and to compare
statistical power in testing heteroskedasticity using these two estimators. We also exam-
ine asymptotic properties of the test statistics. Section 4 gives a real example to illustrate
usage of the variance estimators. Finally, Section 5 concludes the research.

2. Background

In this section, we briefly review GSJS and HKT variance estimators, and PLM estima-
tors by R. Eubank et al. (1998) and Speckman (1988). In a matrix form, model (1) can
be written as

y ¼ Ucþ f þ �, (2)

Figure 1. Performance of two indexes, modeled by partially linear models.
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where y is the vector of the responses y1, y2, :::, yn, U is the specified design matrix, c is the
vector of unknown parameter ci’s, f ¼ ðf ðt1Þ, f ðt2Þ, :::, f ðtnÞÞ0, and � is the vector of error
terms. In model (2), we want to estimate the tuning parameter k related to nonparametric
function f, the expected value lk ¼ EðyÞ, the parametric parameters c, and variance r2:

2.1. GSJS difference based variance estimators for a simple nonparametric
regression model

Gasser, Sroka, and Jennen-Steinmetz (1986) proposed second order difference based

variance estimators for a simple nonparametric regression model as r̂2
GSJS ¼Pn�2

i¼1 ~�
2
i =ðn� 2Þ, where ~�i’s are called pseudo-residuals defined as

~�i ¼ di0yi þ di1yiþ1 þ di2yiþ2, (3)

with di0 ¼ �ai=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2i þ b2i

p
, di1 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2i þ b2i

p
, di2 ¼ �bi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2i þ b2i

p
for ai ¼ ðtiþ2 � tiþ1Þ=ðtiþ2 � tiÞ, and bi ¼ ðtiþ1 � tiÞ=ðtiþ2 � tiÞ:
The pseudo residuals ~�2i are from straight line fits involving triples of points in lieu

of successive differences. They can be considered as weighted average of the observa-
tions that are asymptotically free of response means. Gasser, Sroka, and Jennen-
Steinmetz (1986) showed that when �i’s are independent and identically distributed,ffiffiffi
n

p ðr̂2
GSJS � r2Þ has a limiting normal distribution.

The difference based variance estimator GSJS of r2 can be written in a matrix form
as follows:

r̂2
GSJS ¼

yTAT
GSJSAGSJSy

n� 2
,

where

AGSJS ¼

d10 d11 d12 0 0 � � � 0 0 0
0 d20 d21 d22 0 � � � 0 0 0
0 0 d30 d31 d32 � � � 0 0 0

0 0 0 0 0 . .
.

0 0 0
0 0 0 0 0 � � � dn�2, 0 dn�2, 1 dn�2, 2

2
666664

3
777775:

2.2. HKT difference based variance estimators for a simple nonparametric
regression model

Hall, Kay, and Titterington (1990) proposed a difference based variance estimator r̂2
HKT

for use in a simple nonparametric regression model. Let m be the order of the sequence.
A difference sequence dj

� �
is subject to the constraints

Pm
j¼1 dj ¼ 0, and

Pm
j¼1 d

2
j ¼ 1,

where dj ¼ 0 for j< 0 and j>m, and d0dm 6¼ 0: The estimator based on order m
sequence is as follows:

r̂2
HKT ¼ 1

n�m

Xn�m

k¼1

Xm
j¼1

djyjþk

 !2

,
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or in a matrix form as

r̂2
HKT ¼ yTAT

HKTAHKTy
n� 2

:

For a sequence with m¼ 3,

AHKT ¼

d0 d1 d2 0 0 � � � 0 0 0
0 d0 d1 d2 0 � � � 0 0 0
0 0 d0 d1 d2 � � � 0 0 0

0 0 0 0 0 . .
.

0 0 0
0 0 0 0 0 � � � d0 d1 d2

2
666664

3
777775

with d0 ¼ 0:8090, d1 ¼ �0:5, and d2 ¼ �0:3090:
The HKT optimal difference sequences provide substantial improvements over other

commonly used sequences, and are free of unknown parameters. The efficiency of an
optimal mth-order difference estimator relative to the error sample variance is
2m=ð2mþ 1Þ: Hall, Kay, and Titterington (1990) showed that the mean squared error
(MSE) of r̂2

HKT is

MSEðr̂2
HKTÞ ¼

1
n

Eð�4i Þ � r4 þ r4

m

� �
þ oðn�1Þ:

Later, Dette, Munk, and Wagner (1998) derived a more detailed MSE formula for
r̂2
HKT as follows:

MSEðr̂2
HKTÞ ¼

1
n

�
Eð�4i Þ � r4 þ r4

m

�

þ ð2mþ 1Þ2ðmþ 1Þ2
144n2

�
kf 0k42 þ

4r2

n
kf 0k22

�
þ oðn�5Þ:

(4)

Equation (4) shows that the degree of smoothness of the nonparametric function f
has an effect on estimating MSEðr̂2

HKTÞ:

2.3. Estimators of PLM

For the PLM model (2), R. Eubank et al. (1998) and Speckman (1988) suggested the fol-
lowing estimator for mean of y :

lk ¼ Uck þ fk, (5)

with

ck ¼ ðUTðI� SkÞUÞ�1UTðI� SkÞy, (6)

and fk ¼ Skðy � UckÞ, where Sk ¼ XkðXT
kXkÞ�1XT

k ,Xk ¼ xjðtiÞi¼1, :::, n, j¼1, :::, k, xj’s are the

basis functions, and k is the tuning parameter to be estimated via generalized cross-val-
idation (GCV) method.
R. Eubank et al. (1998) also suggested a difference based estimator of r2 for use in a

PLM as follows:
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~r2 ¼ yTATðI� PÞAy
trðATðI� PÞAÞ , (7)

where A is a differencing matrix, and P ¼ AUðUTATAUÞ�1UTAT : We apply differenc-
ing matrices AGSJS and AHKT for GSJS and HKT estimators respectively.
Under regularity conditions, R. Eubank et al. (1998) showed that

Eð~r2Þ ¼ r2 þ Oðn�2Þ,

and

(1)
ffiffiffi
n

p ðckopt � cÞ!d Nð0,VÞ: If ck ¼ Cky, the confidence interval for the ith unknown

parameter ci is

cik̂62~r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ck̂C

T
k̂

h i
ii

r
:

(2)

ffiffiffi
n

p ð~r2 � r2Þ ¼ Zn þ Op n�
1
2ð Þ

where s�
1
2Zn!L Nð0, 1Þ (Klipple 2000) and

s ¼ r00 þ
Xm
c¼1

2 � ðn�m� cÞ
n�m

r0c (8)

r00 ¼ Var ~�2i jVarð�iÞ ¼ r2
� � ¼ Eð�41Þ

Xm
i¼0

d4i þ 6r4
Xm�1

i¼0

Xm
j¼iþ1

d2i d
2
j � r4 (9)

r0c ¼Cov ~�2i ,~�
2
iþcjVarð�iÞ ¼ r2

	 


¼ðE�41 � r4Þ
Xm�c

i¼0

d2i d
2
iþc þ 4r4

Xm�c�1

i¼0

Xm�c

j¼iþ1

didjdiþcdjþc for c ¼ 1, :::,m:
(10)

3. Comparison of difference based variance estimators (GSJS and HKT) in
partially linear models

In this section, we conduct simulation studies to evaluate performance of GSJS and
HKT in PLM under various settings. We also compare power of test for heteroskedas-
ticity using GSJS and HKT estimators, and prove that HKT provides larger power of
the tests for heteroskedasticity under certain conditions.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS 5



3.1. Performance comparison of GSJS and HKT

The partial linear model (1) for the two-group case can be written as follows

y1t1
y1t2
..
.

y1tn1
y2t1
y2t2
..
.

y2tn2

2
66666666666664

3
77777777777775

¼

1 0
1 0
..
.

1 0
0 1
0 1
..
.

0 1

2
6666666666664

3
7777777777775
� c1

c2

� �
þ

f ð1t1Þ
f ð1t2Þ

..

.

f ð1tn1Þ
f ð2t1Þ
f ð2t2Þ

..

.

f ð2tn2Þ

2
66666666666664

3
77777777777775
þ

e1t1
e1t2
..
.

e1tn1
e2t1
e2t2
..
.

e2tn2

2
66666666666664

3
77777777777775
: (11)

Simulation study is performed with factors: (1) c: the difference between c1 and c2 is
set to be 0.5 or 1; (2) population standard deviation r¼ 0.4 or 0.8; (3) sample size for
the two groups ðn1, n2Þ ¼ ð75, 75Þ, ðn1, n2Þ ¼ ð25, 25Þ; (4) functions considered f1ðtÞ ¼
sin ð2ptÞ, f2ðtÞ ¼ 3t þ 4t2, and f3ðtÞ ¼ sin ð8ptÞ: Figure 2 shows that function f3 has the

Figure 2. Plots of f1, f2, and f3.
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highest volatility. We expect that the two terms kf 03k42 and kf 03k22 in equation (4) are
large, i.e., bias is not negligible. Functions f1 and f2 are relatively smooth.
For the given group size and parameter configuration, we generate L¼ 2000 samples

according to model (11). For each sample, we calculate r̂2
GSJS, r̂

2
HKT , and report averages

of r̂2
GSJS and r̂2

HKT , standard sampling variability seðr̂2Þ, Bias2 and MSE from the 2000
simulations.
Tables 1–3 give the simulation results. From Tables 1–3, we can see that variance

estimates r̂2
GSJS and r̂2

HKT are close to each other under different settings. seðr̂2Þ by
HKT are smaller than those of GSJS since HKT provides optimal difference sequences
for estimating error variance. For functions f1 and f2, biases are almost close to 0, mean-
ing that MSE of functions f1 and f2 are almost the same as varðr̂2Þ: From Table 3, with
the highest volatility function f3 and large sample size of 75, Bias2 is very small com-
pared to varðr̂2Þ for both GSJS and HKT. Theoretically, for GSJS estimator, R. L.
Eubank (1999, page 49) stated, “GSJS estimator is

ffiffiffi
n

p
-consistent in that r̂2 � r2 ¼

Opðn�1=2Þ, in other words, bias goes to 0 when n goes to infinity. For HKT estimator,

theorem from Hall, Kay, and Titterington (1990, page 526) stated that varðr̂2Þ �
Eðr̂2 � r2Þ2 � n�1s2 as n goes to infinity.

Table 1. Simulation results using function f1 with different sizes n1 ¼ 75, n2 ¼ 75 and n1 ¼ 25, n2 ¼
25: Index “G” represents GSJS, and index “H” represents HKT. Numbers reported in the table are the
average, standard error (se), mean squared error (MSE) and bias square (Bias2) of the GSJS and HKT
variance estimators.

n1 ¼ 75, n2 ¼ 75

c r r̂2
G seðr̂2

GÞ MSEG Bias2G r̂2
H seðr̂2

HÞ MSEH Bias2H
0.5 0.4 0.1604 0.0269 0.0007 0.0000 0.1612 0.0211 0.0004 0.0000
0.5 0.8 0.6425 0.1029 0.0106 0.0000 0.6430 0.0818 0.0067 0.0000
1 0.4 0.1602 0.0253 0.0006 0.0000 0.1609 0.0206 0.0004 0.0000
1 0.8 0.6398 0.1058 0.0111 0.0000 0.6427 0.0845 0.0071 0.0000

n1 ¼ 25, n2 ¼ 25

c r r̂2
G seðr̂2

GÞ MSEG Bias2G r̂2
H seðr̂2

HÞ MSEH Bias2H
0.5 0.4 0.1601 0.0464 0.0021 0.0000 0.1688 0.0374 0.0014 0.0000
0.5 0.8 0.6403 0.1828 0.0334 0.0000 0.6472 0.1464 0.0214 0.0000
1 0.4 0.1600 0.0461 0.0021 0.0000 0.1690 0.0372 0.0014 0.0000
1 0.8 0.6379 0.1850 0.0342 0.0000 0.6469 0.1452 0.0211 0.0000

Table 2. Simulation results using function f2 with different sizes n1 ¼ 75, n2 ¼ 75 and n1 ¼ 25, n2 ¼
25: Index “G” represents GSJS, and index “H” represents HKT.

n1 ¼ 75, n2 ¼ 75

c r r̂2
G seðr̂2

GÞ MSEG Bias2G r̂2
H seðr̂2

HÞ MSEH Bias2H
0.5 0.4 0.1592 0.0264 0.0007 0.0000 0.1627 0.0206 0.0004 0.0000
0.5 0.8 0.6349 0.1045 0.0109 0.0000 0.6398 0.0842 0.0070 0.0000
1 0.4 0.1597 0.0256 0.0006 0.0000 0.1631 0.0206 0.0004 0.0000
1 0.8 0.6403 0.1031 0.0106 0.0000 0.6426 0.0832 0.0069 0.0000

n1 ¼ 25, n2 ¼ 25

c r r̂2
G seðr̂2

GÞ MSEG Bias2G r̂2
H seðr̂2

HÞ MSEH Bias2H
0.5 0.4 0.1594 0.0466 0.0021 0.0000 0.1874 0.0374 0.0021 0.0007
0.5 0.8 0.6378 0.1868 0.0348 0.0000 0.6654 0.1477 0.0224 0.0006
1 0.4 0.1599 0.0463 0.0021 0.0000 0.1875 0.0374 0.0021 0.0007
1 0.8 0.6377 0.1858 0.0345 0.0000 0.6651 0.1474 0.0223 0.0006
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However, with medium sample size of 25, bias of HKT is not negligible. For example,
for the setting with c ¼ 0:5 and r2 ¼ 0:16, bias is dominating with Bias2 ¼ 0:0231 com-
pared to varðr̂2Þ ¼ 0:00222 ¼ 4:84 � 10�6: This can be explained by MSE formula (4) of
HSK estimator, in which bias term involves first derivative of function f. When function
f is with great volatility, bias term is not negligible, or sometimes is dominating. HKT
may not be suitable for high volatility functions with medium sized sample. On the
other hand, GSJS performs well with medium group size and function f3.
Table 4 listed MSEs calculated by s=n, where s is defined in equation (8). These are

treated as true MSE. We can see that MSE from the simulation studies are close to the
MSE in Table 4.

3.2. Testing heteroskedasticity

In this section, we first stated two theorems. One theorem is about the asymptotic dis-

tribution of test statistic T in equation (12) under H0 : �i�iidNð0, r2Þ, and the other is
regarding the statistical power of HKT and GSJS when testing for heteroskedasticity.
Next, we did simulation studies on the power of test for heteroskedasticity.

3.2.1. Theorems

Theorem 1. For a PLM under H0 : �i�iidNð0, r2Þ, assume that the nonparametric function
f 2 C2½0, 1� (C2½0, 1� denotes the set of all functions on ½0, 1� with second order continuous
derivatives), maxjti � ti�1j ¼ Oðn�1Þ, and f 0A0Af ¼ Oðn�1Þ, the test statistic T converges
to a standard normal distribution, i.e.,

Table 4. True MSE calculated for r ¼ 0:4 and r ¼ 0:8 by s=n for GSJS and HKT estimators under
different settings, where s is obtained by equation (8).

GSJS HKT

n n¼ 50 n¼ 150 n¼ 50 n¼ 150

r ¼ 0:4 0.001970 0.00066 0.00128 0.000426
r ¼ 0:8 0.03152 0.01058 0.02048 0.006826

Table 3. Simulation results using function f3 with different sizes n1 ¼ 75, n2 ¼ 75 and n1 ¼ 25, n2 ¼
25: Index “G” represents GSJS, and index “H” represents HKT.

n1 ¼ 75, n2 ¼ 75

c r2 r̂2
G seðr̂2Þ MSEG Bias2G r̂2

H seðr̂2
HÞ MSEH Bias2H

0.5 0.16 0.1593 0.00068 0.0006 0.0000 0.1774 0.00046 0.0007 0.0003
0.5 0.64 0.6378 0.0113 0.0113 0.0000 0.6555 0.0072 0.0074 0.0002
1 0.16 0.1613 0.00068 0.0006 0.0000 0.1784 0.00042 0.0007 0.0003
1 0.64 0.6392 0.0118 0.0117 0.0000 0.6558 0.0074 0.0076 0.0002

n1 ¼ 25, n2 ¼ 25

c r2 r̂2
G seðr̂2

GÞ MSEG Bias2G r̂2
H seðr̂2

HÞ MSEH Bias2H
0.5 0.16 0.1677 0.0022 0.0022 0.0000 0.3122 0.0022 0.0254 0.0231
0.5 0.64 0.6509 0.0359 0.0360 0.0001 0.7950 0.0259 0.0499 0.0240
1 0.16 0.1681 0.0022 0.0022 0.0000 0.3126 0.0023 0.0255 0.0232
1 0.64 0.6467 0.0343 0.0343 0.0000 0.7908 0.0253 0.0480 0.0227
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T ¼
Pn�m

i¼1 ðti ��tÞð~�2i � r2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
Pn�m

i¼1 ðti ��tÞ2
q !L Nð0, 1Þ, (12)

where s is defined in equation (8).
Proof is given in Appendix.

Theorem 2. Consider H0 : �i�iidNð0, r2Þ, under regularity conditions given in Theorem 1,
HKT using optimal difference sequences will provide larger power of the tests compared
to GSJS.

Proof is given in Appendix.

3.2.2. Simulation studies on testing heteroskedasticity using GSJS and HKT
In this section, we perform simulations to study power of testing heteroskedasticity by

using GSJS and HKT variance estimators. By Theorem 1, under H0 : �i�iidNð0, r2Þ, test
statistic T converges to a standard normal distribution.
Let r ¼ 0:4þ bt, where b is a coefficient that controls the magnitude of deviations

from r ¼ 0:4: Consider b ¼ ð0, 0:1, 0:2, 0:4, 0:8Þ, n1 ¼ 75, n2 ¼ 75, and functions f1, f2
and f3 in the simulation. We did L¼ 2000 simulations for each setting, and reported
power of the tests in Figures 3–5. From Figures 3–5, we can see that tests by using
GSJS and HKT variance estimators both control type I error well. Power of tests by
using HKT estimator is larger than that by using GSJS estimator. In addition, when
deviation from r is large enough such that b¼ 0.8, power of tests by using both estima-
tors approaches 1.

Figure 3. Power of tests for heteroskedasticity using function f1, and variance estimators GSJS
and HKT.
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4. Application

In this section, we illustrate usage of the GSJS and HKT estimators in PLM using a real
data example. Consider two indexes: nasdaq composite and S&P 500, which include dif-
ferent companies. To make the results comparable, we define percentage of return as
the market value of the index every five minutes divided by the closing market value
from the previous day. There are 78 data points collected during a six and half hour
trading day. PLM model (11) is used for this example. Both indexes are in the same

Figure 4. Power of tests for heteroskedasticity using function f2, and variance estimators GSJS
and HKT.

Figure 5. Power of tests for heteroskedasticity using function f3, and variance estimators GSJS
and HKT.
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market environment which is modeled by the nonparametric function f ð�Þ: On the
other hand, the two indexes include different public traded companies in open market,
therefore the indexes have different performance that is modeled by c1 and c2.
In general, the two indexes have similar shapes and trends, but vary over time. Is the

variation of percentage of return over time a constant? Is the percentage of return of
the two indexes significantly different from each other? To answer these questions, we
use GSJS and HKT to estimate the variance and perform tests of heteroskedasticity and
difference of the means.
Using equation (6), the estimated difference of the slopes is ĉ ¼ 0:001258: Replace A

by AGSJS in equation (7), the GSJS variance estimate is calculated as r̂2
GSJS ¼ 7:759 �

10�7: Similarly, replace A by AHKT , the HKT variance estimate is r̂2
HKT ¼ 6:059 � 10�7:

To test heteroskedasticity, we obtain the test statistics by equation (12). Using GSJS
estimate, TGSJS ¼ �4:13, and using HKT estimate, THKT ¼ �3:81: Since T is asympto-
ticly normal under H0, we compare TGSJS and THKT to the critical value Z0:975 ¼ 1:96,
and reject the null hypothesis of constant variance. We conclude that at 5% significance
level, the variations of percentage of return of the two indexes (nasdaq composite and
S&P 500) on April 20th 2016 are not constants.
To test the difference c of means c1 and c2, we first calculate standard er- rors. By

the asymptotic normality property (1) in Section 2.3, standard error of ĉ from GSJS is

r̂GSJS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Ck̂C

T
k̂
�ii

q
¼ 0:0000705, and from HKT is r̂HKT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Ck̂C

T
k̂
�ii

q
¼ 0:0000623: Test sta-

tistics are TGSJS ¼ 0:001258=0:0000705 ¼ 17:84, and THKT ¼ 0:001257=0:0000623 ¼
20:17: Compared to critical value of Z0:975 ¼ 1:96, we reject the null hypothesis, and
conclude that the mean percentage of return of two indexes are significantly different
from each other.

5. Conclusions

In this research, we studied two difference based variance estimators GSJS and HKT in
PLMs. Simulation studies show that both GSJS and HKT work well in estimating r2 for
PLMs under various settings. HKT tends to have smaller MSE compared to GSJS for
large samples. This is because HKT provides optimal difference sequences for estimating
error variances. For medium and small samples with high volatility function such as
function f3, bias of HKT is not negligible. Therefore, we would suggest using GSJS for
variance estimation for medium and small samples with high volatility function. In test-
ing heteroskedasticity, HKT always provides larger power than GSJS.
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Appendix

Proof of Theorem 1 follows a similar argument as that of Theorem 2 by Klipple (2000).
Proof of Theorem 2 is as follows:

Proof. Let r2i be the variance of �i under alternative hypothesis. Without loss of generality,
assume that r2i ¼ r2gðtiÞ, where gðtiÞ is a smooth non-constant positive function.

Follow a similar argument as that of Lemma 3.4 (Klipple 2000), we have

E
Xn�m

i¼1

ðti ��tÞ~�2i
 !

¼
Xn�m

i¼1

ðti ��tÞgðtiÞr2: (13)
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By the fact that gð�Þ is a smooth function and maxjti � ti�1j ¼ Oðn�1Þ,

Var
Xn�m

i¼1

ðti ��tÞ~�2i
 !

¼
Xn�m

i¼1

ðti ��tÞ2g2ðtiÞr00 þ 2
Xm
c¼1

Xn�m�c

k¼1

ðtk ��tÞðtkþc ��tÞgðtkÞgðtkþcÞr0c

¼
Xn�m

i¼1

ðti ��tÞ2g2ðtiÞ r00 þ 2
Xm
c¼1

r0c

 !
þ oðnÞ

¼
Xn�m

i¼1

ðti ��tÞ2g2ðtiÞsþ oðnÞ,

(14)

where r00, r0c are defined in equations (9) and (10) respectively.
Recall that the test statistic is T ¼Pn�m

i¼1 ðti ��tÞð~�2i � r2Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
Pn�m

i¼1 ðti ��tÞ2
q

: By equation
(13),

EðTjr2i ¼ r2gðtiÞÞ ¼ E

Pn�m
i¼1 ðti ��tÞ~�2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
Pn�m

i¼1 ðti ��tÞ2
q

0
B@

1
CA (15)

¼
r2
Pn�m

i¼1 ðti ��tÞgðtiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
Pn�m

i¼1 ðti ��tÞ2
q (16)

Since sHKT � sGSJS, if t and g(t) are positively correlated, i.e.,
Pn�m

i¼1 ðti ��tÞðgðtiÞ � �gðtiÞÞ > 0,
we have

EðTHKT jr2i Þ � EðTGSJSjr2i Þ � 0; (17)

On the other hand, if if t and g(t) are negatively correlated,
EðTHKT jr2i Þ � EðTGSJSjr2i Þ � 0; (18)

Now we want to prove that asymptotically the sampling distribution of THKT and TGSJS has
same variance. By result from equation (14),

VarðTÞ ¼ 1

s
Xn�m

i¼1
ðti ��tÞ2

Xn�m

i¼1

ðti ��tÞ2g2ðtiÞsþ oð1Þ

¼
Xn�m

i¼1
ðti ��tÞ2g2ðtiÞXn�m

i¼1
ðti ��tÞ2

þ oð1Þ

Thus, asymptotically, the sampling distribution of T has constant variance for HKT and GSJS.
The statistical power of the tests are determined by mean of the test statistics. By equations (17)
and (18), jEðTHKT jr2i Þj � jEðTGSJSjr2i Þj, so that method HKT leads to more rejection, thus pro-
vides higher statistical power compared to method GSJS.
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