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Additive multi-task learning models and task diagnostics
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ABSTRACT
This paper develops a model for multi-task machine learning that incorpo-
rates per-task parametric and nonparametric effects in an additive way.
This allows a practitioner the flexibility of modeling the tasks in a custom-
ized manner, increasing model performance compared to other modern
multi-task methods, while maintaining a high degree of model explainabil-
ity. We also introduce novel methods for task diagnostics, which are based
on the statistical influence of tasks on the model’s performance, and pro-
pose testing methods and remedial measures for outlier tasks. Additive
multi-task learning model with task diagnostics is examined on a well-
known real-world multi-task benchmark dataset and shows a significant
performance improvement over other modern multi-task methods.

ARTICLE HISTORY
Received 4 June 2022
Accepted 3 May 2023

KEYWORDS
Additive models; Backfitting
algorithm; Multi-task
learning; Outlier tasks;
Support vector machines;
Task diagnostics

1. Introduction

Multi-task learning is a subfield of machine learning that learns information from multiple tasks simultan-
eously, making use of similarities and differences between the tasks. In many research and application con-
texts, a practitioner is often faced with situations where data can intuitively be separated into tasks, where
some information sharing between tasks is evident, while there are also some distinctions between tasks
that demand customized attention. The objective of multi-task learning models is to accommodate this
information exchange between tasks such that we can obtain a model that has higher predictive power
than either training separate models for each task, or one single-task model for all tasks simultaneously.

As we assume that all tasks are somehow related to each other, it is the objective of the multi-task
learning model to learn these task relationships. Tasks can be similarly or differently distributed or
have clusters of similarly distributed tasks. There may also arise situations where most tasks are
similar to each other, while some few tasks differ in their distributions. We denote the latter as out-
lier tasks. The vast distributional differences may affect the predictive power of the model fit, such
that the model may predict poorly on the majority class tasks and on outlier tasks. It is therefore
desirable to identify such tasks and to address them specifically to improve the model performance.

Multi-task learning is widely used in fields such as finance, economics, medicine, and education. For
example, in finance and economics forecasting, it is often required to predict the value of many possibly
related indicators simultaneously (Fiot and Dinuzzo 2015); in stock price prediction, stocks are often
related to each other in multi-task fashion (Ghosn and Bengio 1996; Bitvai and Cohn 2015); in bioinfor-
matics, we may want to study tumor prediction from multiple microarray data sets or analyze data from
multiple related diseases simultaneously (Y. Zhou et al. (2021)); in small area estimation, we may want
to study the small area total estimate from multiple areas simultaneously; in web search, search results
can be improved when combining information from multiple geographical markets that exhibit similar
or distinct search patterns (Bai, et al. 2009).
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In the context of supervised learning, regularized multi-task learning methods have received sig-
nificant attention from many researchers. The idea of multi-task mean regularization, where task
parameters are penalized individually and with regard to their closeness to the overall mean of all
task parameters, was first introduced in Evgeniou and Pontil (2004). This idea was further general-
ized to be cast into any L2-regularized single-task learning problem using specialized multi-task ker-
nels in Evgeniou, Micchelli, and Pontil (2005). An extensive overview of vector-valued functions

and kernels is given in �Alvarez, Rosasco, and Lawrence (2012), and learning these functions in
RKHS is studied by Micchelli and Pontil (2005). Extension of representer theorem (Kimeldorf and
Wahba 1971) to multi-task regularization was studied in Argyriou, Micchelli, and Pontil (2009).
Despite a wide variety of models in multi-task learning, there is a need for multi-task model that
can account for both parametric and nonparametric effects at the same time.

Identification of outlier tasks has been investigated significantly from an algorithmic perspec-
tive. One popular framework is robust multi-task learning, initially proposed in Chen, Zhou, and
Ye (2011). Gong, Ye, and Zhang (2012) proposed working with parameters of each task’s para-

metric models, which are defined as f iðxðiÞj Þ ¼ ðxðiÞj ÞTwi, where wi are parameter vector of task i.

The parameter vectors are then combined as columns in a matrix W 2 Rd�m and decomposed as
W ¼ P þ Q, and separate penalties are imposed on these matrices, such that P encodes the shared
features among tasks and Q captures the outlier tasks. The latter step is done in order to simplify
the optimization problem. Thus, this method learns both the shared features and outlier tasks.
The loss minimization is then performed using a modified version of gradient descent. Gong, Ye,
and Zhang (2012) also decomposed the matrix W with group sparsity, while Pu, et al. (2013) pro-
posed to solve a similar problem by using the accelerated proximal method. Chen, Liu, and Ye
(2012) introduced a multi-task model which is robust to influence of outlier tasks. Kumar and
Daum�e (2012) proposed that there exist some basis tasks, and all other tasks can be expressed as
linear combinations of these tasks. Zhong et al. (2016) further relax the tasks group structures
assumptions to identify them instead. Jeong and Jun (2018) attempt a similar approach by opti-
mizing two coefficient matrices based on a low-rank assumption. It should be noted, however,
that a general limitation of these frameworks is that they can only accommodate parametric mod-
els, which limits their applicability to nonparametric relationships.

Nonetheless, it is generally the case that the existing works in multi-task learning and task
diagnostics for multi-task learning are highly algorithmic in nature, not motivated by the statis-
tical groundwork, and have a major focus on the development of optimization procedures. There
is a significant focus on linear and parametric models, limiting their applicability to more com-
plex datasets, where nonparametric and nonlinear effects are often present. Another distinct ten-
dency is the assumption of all tasks are equally related to each other in every cluster. The focus is
mostly on clustering the tasks into groups, not on identifying the outlier tasks and performing
remedial measures. In this research work, we propose methods that seek to overcome these limi-
tations, have a statistical foundation, and also to generalize the algorithmic clustering methods.

Contributions of this paper are two-fold. First, we introduce an extension of the above frame-
work, the multi-task additive model, that allows combining parametric and nonparametric effects in
the same multi-task learning model in an additive way. It allows a practitioner to fully adjust the
model to their particular needs, clearly separating linear and nonlinear effects, leading to the maxi-
mization of the model’s predictive power. Our methods allow for maintaining a high degree of
model explainability and require significantly less data for successful training than other modern
multi-task methods, such as multi-task neural networks. To achieve this, we use the well-established
framework of generalized additive models. As the additive functions of additive models are conven-
tionally found using backfitting algorithm, we introduce its extension to the multi-task additive
model. This novel fitting procedure is highly customizable, which allows a practitioner to adjust the
fitting process in the most suitable way for the data at hand. Moreover, we introduce a novel model
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testing procedure, which allows simultaneous testing of parametric and nonparametric effects in the
multi-task additive model, further enhancing the theoretical and statistical qualities of the model.

Second, we introduce novel task diagnostic procedures, which allow an understanding of task
influence on model performance in a fully explainable way. Identifying outlier tasks allows further
diagnostics into the model’s performance, and can help the practitioner understand their dataset
better to further improve their model performance. The methods and ideas we used for task diag-
nostic are intuitive and are based on conventional statistical techniques, yet we are not aware of
applications of similar techniques to multi-task learning.

The rest of the paper is organized as follows. In Sec. 2 we introduce the additive multi-task learning
model. The task influence test, which is designed to identify and remedy outlier tasks, is introduced in
Sec. 3. We then apply the new methods to a real-world benchmark multi-task dataset in Sec. 4 and
compare the results with other popular multi-task learning methods. Finally, in Sec. 5 we discuss the
ramifications of our work and consider directions for further research.

2. Additive multi-task learning model

In this chapter we introduce the extension of the additive modeling approach to the multi-task
learning framework.

First, for a more rigorous setup of the problem, following the notation in Evgeniou et al.
(2005), suppose that we have n datapoints ðxi, yiÞji 2 ½1, :::, n�� �

with xi 2 Rd and yi 2 R: A regu-
larized single task kernel learning criterion is a tradeoff between goodness-of-fit and smoothness/

complexity of the function, i.e. 1
n

Pn
i¼1Lðyi, f ðxiÞÞ þ cjjf jj2k, where jjf jj2k is the norm of f in Hk, and

Hk is the reproducing kernel Hilbert space generated by a kernel Kð�, �Þ: The goal is to find the
unique minimizer in Hk to learn a function of f. Multi-task learning is an extension of the single
task learning method to m tasks modeled by f1, f2, :::, fm respectively. Let ni be the size of task i,
and n ¼Pm

i¼1ni be the total number of observations for all tasks. Regularized multi-task learning
estimates f1, f2, :::, fm simultaneously by minimizing

1
n

Xm
i¼1

Xni
j¼1

Lðyi,j, fiðxi,jÞÞ þ cJð�Þ (1)

where subscript i, j denotes the jth element of the ith task, and Jð�Þ is the square norm of
f1, f2, :::, fm in Hk, the reproducing kernel Hilbert space generated by a kernel Kl,qð�, �Þ with l, q ¼
1, 2, :::,m: Evgeniou et al. (2005) proposed linear regularization penalty (2) with associated kernel
function (3),

Jð�Þ ¼ 1
n

 Xm
t¼1

jjftjj2 þ 1� k
k

Xm
t¼1

jjft � �f jj2
!

(2)

Kl,qðx, tÞ ¼ ð1� kþ kndl,qÞx0t (3)

where dl,q is an indicator function that is equal to 1 if l¼ q and 0 otherwise, l, q ¼ 1, 2, :::,m: The
parameter k 2 ð0, 1� controls tradeoff between closeness of each of these functions to their average
and a desirable small size of norm of the functions. If k is small, the task functions are close to
their average. If k¼ 1, the task functions are learned independently for a given c.

For a brief review, for regression problems, additive model is given by Hastie, Tibshirani, and
Friedman (2001) as Y ¼ aþPp

i¼1f1ðXiÞ þ � with � being an error term with mean 0,
and

Pn
i¼1fjðxi,jÞ ¼ 0,8j: The functions f are additive in their effect on the response variable Y,

and they can be either parametric for linear relationships or nonparametric for nonlinear
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relationships. They can be found using backfitting algorithm, which is an iterative procedure that
estimates each of the functions sequentially until their convergence.

2.1. Definition

In the following, we define additive multi-task learning model, which allows combining paramet-
ric and nonparametric effects in a per-task fashion.

Let yi,j be an observation j in task i, where i ¼ 1, 2, :::,m and j ¼ 1, 2, :::, ni: Let y ¼
½y1,1, y1,2, :::, y1,n1 , y2,1, :::, ym,nm �0, � ¼ ½�1,1, �1,2, :::, �1,n1 , �2,1, :::, �m,nm �0, f ¼ ½f1ðzÞ, f2ðzÞ, :::, fmðzÞ�0; let
Im be an m�m identity matrix, 1ni be the vector of ni 1s, Z ¼ Im � ½1n10 ; 1n2

0 ; :::, 1nm
0 �0 where � is

Kronecker product.
We fit the additive multi-task learning model

y ¼ Xbþ Zf þ � (4)

where X is a certain design matrix related to the linear term structure, and error terms � are
uncorrelated with mean zero and separate variance in each task, i.e. Var ð�i,jÞ ¼ r2i for all i. The
structure of matrix Z is inspired by the model matrix in analysis of variance (ANOVA) with a
block design. This matrix is fixed, and is designed to separate the multi-task models. Matrix X is
a design matrix for the linear term, and vectors z denote datapoints. These can be either the
same, or different, depending on the model design. Note also that the linear part Xb is paramet-
ric, while the individual functions fiðzÞ are nonparametric in the term Zf:

Using a backfitting procedure as a motivation (Hastie, Tibshirani, and Friedman 2001), we
propose Algorithm 1 to estimate yi,j :

Algorithm 1: fitting the additive multi-task model

Initialize bb ¼ ðX0WXÞ�1X0Wy based on a reduced model: y ¼ Xbþ � for i and j;
repeat

Consider the residual model y � Xbb ¼ Zf þ �, where bf can be solved by regularization
criterion such as (1) using support vector regression (SVR);

Update bb ¼ ðX0WXÞ�1X0Wðy � ZbfÞ;
until bb converges;

_________________________________________________________________________________

where b are fitted with weighted least squares in order to adjust for different variances in each
tasks, and the reciprocals of group variances are estimated as weights in the weight matrix W,
inspired by approach for constant values of response variables described in Montgomery, Peck,
and Vining (2012).

The additive linear and nonlinear effects can be designed to fit a particular problem differently
for each task, which makes this approach incredibly useful in the multi-task learning framework.
Casting the multi-task model in an additive way allows a great flexibility in a range of statistical
models that can be applied to a particular problem, and allows the researcher to explicitly specify
the parts of the model. From a multi-task learning perspective, it allows clear separation of vari-
ous task effects, and can lead to a great increase in performance with a suitable design.

To further demonstrate the flexibility of this definition, in the experimental section we define
matrix X to capture multi-task effects through a one-way ANOVA model, while let vectors z to
be the original predictor variables.

The iterative algorithm of fitting the model is inspired by the backfitting algorithm, but it also
differs in a major way. The original backfitting algorithm has p components (usually the number of
predictors), while our algorithm has only 2 components: the linear and nonlinear parts, as Xb and
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Zf are additive to each other. The first iteration fits the linear estimator to the design matrix X.
The initial fitted linear part gets deducted from the response variable in the second step, and the
nonparametric model is applied. Then, the parametric coefficients get updated with the response
adjusted for the nonlinear part, and the algorithm runs until the linear coefficients converge, which
is also the point where the nonlinear part converges. An alternative stopping criterion can be
defined, for example the maximization of explained variance or minimization of a loss function.

This algorithm of fitting the additive multi-task model can be seen as a form of continuous
bias correstion. At first, some variability is removed by the linear part of the model, then remain-
ing variability is captured by the nonlinear part. This, in turn, allows the linear part to reduce the
variability further, and the process continues until the convergence criteria are satisfied. Thus, lin-
ear and nonlinear models are continually correcting each other’s bias. However, because of the
bias-variance tradeoff, correcting the bias can increase variance. This can lead to overfitting, mak-
ing the model’s prediction less generalizable to new, unseen data. Therefore, particular care
should be taken when devising the stopping criterion.

2.2. Generalization of the fitting algorithm

In the following, we seek to extend the principle of Algorithm 1, in order to further generalize
the fitting procedure and make it more customizable, thus allowing for further increase in the
predictive power of the model.

Note that there are two distinct steps in the model fitting procedure. First, the parametric
component b is fitted, and in the second step, the nonparametric component f is fitted on a
residual model from the first step. This is designed to be one loop of the algorithm. After every
loop, the stopping criterion is checked to see whether the performance has improved or wors-
ened. If the performance keeps improving, it is reasonable to run further loops; otherwise, the
algorithm should be stopped. In Algorithm 1, no consideration is taken for the intermediate
model, inside the loop. However, there may arise circumstances where the intermediate model
performs better than the model of one full loop. Thus, in order to improve this procedure, we
generalize this algorithm to cover these intermediate cases.

In Algorithm 2, stopping criterion and metric are flexible. Denote this metric as M. Then,

Algorithm 2: algorithmic model selection for additive multi-task model

Initialize bb ¼ ðX0WXÞ�1X0Wy based on a reduced model: y ¼ Xbþ �;
Measure M and denote as M0;
repeat

Solve for bf in the residual model y � Xbb ¼ Zf þ �;
Measure M and denote as M1;
if M0 is better than M1 then
Keep the previous model and break the loop

else
Set M1 ! M0

Update bb ¼ ðX0WXÞ�1X0Wðy � ZbfÞ;
Measure M and denote as M1;
if M0 is better than M1 then
Keep the previous model and break the loop

else
Set M1 ! M0

until the loop breaks;
_________________________________________________________________________________
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Algorithm 2 is designed to run the model fitting procedure on the additive multi-task model
until the performance metric is not improving anymore.

Let Kþ 1 be the total number of loops until the stopping criterion is triggered. At the loop
Kþ 1 it would be decided that the new model is not as good as the previous one, thus the new
model is discarded and the previous model from K loops is chosen as the final model.

It is assumed that the performance metric values can be ranked against each other quantita-
tively, such that it is possible to select one with the highest performance. Thus, M0 is better than
M1 implies that M0 and M1 can be ranked, and depending on the numerical scale, one is higher/-
lower than or equal to the other. For example, if explained variance is the metric for the stopping
criterion, and the algorithm stops when explained variance starts to decrease. Other examples of
performance metrics include mean-squared error MSE, Akaike information criterion AIC,
Bayesian information criterion BIC, and deviance information criterion DIC.

It can be seen that the Algorithm 1 is a special case of a more general Algorithm 2. The decision of
stopping the loop is done at multiples at even multiples of K. Thus the first K value where the loop can
stop is at K¼ 2, then after the second loop can stop at K¼ 4 after the second loop, and so on.

2.3. Testing full and reduced models

In this section we consider a further generalization of the additive multi-task model and propose
model testing procedures. These testing procedures further extend the applicability of the additive
multi-task model, improving model diagnostics and predictive power.

Recall the Equation 4, which defines the additive multi-task model: y ¼ Xbþ Zf þ �: The
model makes assumptions of uncorrelated error terms, and different variances in each task, and
in the Algorithm 1 the model fit of the parametric part b is performed using a weighted least-
squares algorithm to implement that assumption.

Relaxing these assumptions, consider the model of Equation 4 to have independent and identi-
cally distributed error terms � with mean 0, and assume that the parametric part b can be esti-
mated by any regression approach. It can be seen that these conditions make the model more
general, as the purpose of this generalization is to open for further customizability. Note that
with these assumptions, the only difference between the additive multi-task model and partially
linear model is the separation of nonparametric components into tasks and the fitting algorithm
which can go in multiple loops, compared to only one loop for the partially linear model (see for
example Engle et al. (1986)).

Under these assumptions, the model is very general, and it now includes most of the other pre-
viously covered models as special cases. In particular, the additive multi-task model of Sec. 2 is a
special case with error terms having different variances within each task, and parametric fit with
WLS. However, this is a full model, as both parametric and nonparametric components are present
in the model.

Usually, we can’t be sure of the correctness of any model until we test all the assumptions.
Therefore, the important class of special cases is reduced models. Both the parametric part and
the nonparametric part can be evaluated for their suitability to be included in the model.

To test the appropriateness of the parametric part, the decision is to be made on the null
hypothesis:

H0 : b ¼ 0 (5)

and to test the nonparametric part, a decision is to be made on

H0 : f ¼ 0 (6)

The decisions on these hypotheses can be done with model selection and diagnostics tools. It
can be seen that the set of techniques that can be used to test these hypotheses can potentially
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include a large part of the statistical inference field. For example, both tests in Equations 5 and 6
can be separately tested using model complexity penalty measures such as Akaike Information
Criterion, Bayesian Information Criterion, or minimum description length. Test for the parametric
part b of Equation 5 can be performed using general linear test (F-test). Some notable nonparamet-
ric model selection procedures include those proposed by Yang (1999) and Wegkamp (2003).

In particular, the parametric part of the model in Equation 5 can be tested by applying model

testing procedures on y � Zbf: In the Algorithms 1 and 2, the model fitting happens on the para-
metric part first, and then the residual model is trained nonparametrically. In order to facilitate

testing on y � Zbf , the algorithms would need to fit the models in a reverse order: first nonpara-
metrically, and then the residual model can be tested with H0 : b ¼ 0: For example, a decision on
this H0 can be done with a general linear test. Also, note that since the parametric part has indi-
vidual components, these can be tested as separately as H0 : bj ¼ 0 for element j in b: Variable

selection procedures can be well-suited, for example, test of model coefficients in OLS regression.
For partially linear models, Eubank (1999) states the conditions for the test of the parametric

part of the model in a special case when nonparametric smoothing is used for estimating the
nonparametric part f. The estimator of b becomes:bb ¼ ðXTðI� SÞTðI� SÞXÞ�1XTðI� SÞTðI� SÞY (7)

where S is a smoother matrix of a kernel type estimator for the nonparametric fit of f. It can be

shown that bb achieves asymptotic Normal distribution, and the decision on H0 : b ¼ 0 can be
done on the basis of the t-statistic:

t ¼
bb

ŝ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XTðI� SÞTðI� SÞX

q (8)

where ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðyi�YÞ2
n�1

q
is a sample standard deviation of Y.

For the two-sided alternative HA : b 6¼ 0, we reject H0 at a confidence level if jtj > ta=2, where
ta=2,ðn�1Þ is a=2-th percentile of the t-distribution with n� 1 degrees of freedom.

Reduced versions of the additive multi-task model include conventional parametric and non-
parametric models as special cases. As the model fit is done with Algorithm 1, or its general ver-
sion in Algorithm 2, the model performance can be further strengthened even in cases of reduced
models. Note that the initial definition of the additive multi-task model in Equation 4 is also a
special case of this generalization, although it is not reduced in the parameter space. In the subse-
quent real dataset example, an analysis of the full version and two restricted versions of the
model is performed.

3. Task influence test

In multi-task learning, we assume that all tasks are somehow related to each other, and it is the objective
of the multi-task learning model to learn these task relationships. Tasks can be similarly or differently
distributed, or have clusters of similarly distributed tasks. There may also arise situations where most
tasks are similar to each other, while some few tasks differ in their distribution. We denote the latter as
outlier tasks. The vast distributional differences may affect the predictive power of the model fit, such
that the model may predict poorly on the majority class tasks and on outlier tasks. It is therefore desir-
able to identify such tasks and to address them specifically to improve the model performance.

We propose an approach to identify outlier tasks inspired by Cook’s distance procedure in
regression analysis in Cook (1977) and Cook (1979). For each observation in a regression model,
Cook’s distance measures the influence of deleting that observation on a predictive performance
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of that model. The observations with large Cook’s distance values may be outliers and/or highly
influential, and merit closer examination.

For multi-task learning, we seek to find outlier tasks instead, as it may not be suitable to
consider each observation individually as in Cook’s distance procedure. Thus, we can consider
the influence of a task by deleting this task from the training data, refitting the model, and
checking the its influence on the predictive power on the training set. We also seek to keep the
deleted task observations in the training set for the purposes of measuring the performance of a
model with that task deleted. That way, all the models with the deleted tasks can have their per-
formance measured on the same dataset, which allows the easier identification of the outlier
tasks.

Using this procedure we obtain deleted explained variance (DEV) for each task. For task i,
DEVi is defined as

DEViðYtrain, Ŷ
ðiÞ
trainÞ ¼

VarðYtrainÞ �MSEðYtrain, Ŷ
ðiÞ
trainÞ

VarðYtrainÞ (9)

where Ŷ
ðiÞ
train are fitted values of all tasks’ training set, based on a model which is trained with task

i deleted from the training set.
If the DEV is high, then deleting this task has improved the overall model fit, and this task

can be considered to be deleted. If the DEV is low, then deleting this task has significantly wors-
ened the overall model fit, therefore such task should be kept in the model. Thus we seek to
remove tasks with high DEV. We can do so by computing the difference of the overall explained
variance, when all tasks are present in the model, with the DEV. This defines the deleted
explained variance test statistic for task i as Di:

Di ¼ EVðYtrain, ŶtrainÞ � DEViðYtrain, Ŷ
ðiÞ
trainÞ (10)

where EV is the overall explained variance with all tasks’ training sets used both for training and
testing.

When Di is high, then the DEV is low, and vice versa. Using the overall explained variance in
this way gives us a natural threshold level to identify outlier tasks. Even though only tasks with
positive Di are candidates for being outlier tasks, it may not be the best strategy to delete all tasks
with the positive Di. A good strategy can be to start with investigation and deleting the task with
the lowest Di, and move forward in a sequential procedure, removing tasks one-by-one until we
find a task combination which results in the highest explained variance in the final model (or the
lowest error rate).

Algorithm 3: task influence testing procedure

fit the model to training data of all tasks together;
use the model to predict the training set data of all tasks together;
measure the overall explained variance EV;
for each task do

remove its observations from the training data;
fit the model on the data with this task deleted;
use the model to find fitted values for the training set of all tasks together;
measure and record the deleted explained variance (DEVi) for this task;
compute Di, the difference of overall explained variance and DEV;

rank the tasks by Di from lowest to largest;
remove the tasks with Di lower than some threshold value s;
use the remaining tasks to fit the final model;
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The task influence testing procedure is summarized in Algorithm 3. For illustration, this example
uses threshold value s, such that tasks with lower Di than s are regarded as outlier tasks. The
value of s can be chosen using cross-validation for the best performance. In the following, we
introduce two ways that the parameter s can be chosen.

3.1. t-distribution cutoff values for task outliers

In this section, we establish a distributional approach to choosing the parameter s for identifica-
tion of outlier tasks. Figure 1 displays each task’s Di and ranks them from lowest to highest. Note
that this plot has characteristics of a QQ plot and that Di values look similar to a sample from a
normal distribution, although with rather fat tails. This means that the cutoff values can be
devised in a manner of a hypothesis test. If the Di have approximate normal distribution, we
assume that the standardized values of Di are drawn from a t-distribution with m� 1 degrees of
freedom.

In this setup, it is natural to consider a cutoff value that separates the t-distribution to accept-
ance and rejection regions. The acceptance region is defined as an area in the t-distribution with
m� 1 degrees of freedom where tasks are not considered outliers. The rejection region is an area
where tasks are considered to be outliers and are deleted from the training set. Since tasks with
very low Di are considered outlier tasks, their standardized values of Di are far in the left tail of
the t-distribution with m� 1 degrees of freedom. It means that the rejection region should be
defined to be an area of certain probability in the left tail of t-distribution.

In other words, let a be a chosen confidence level. Let tða,m� 1Þ be a a-quantile of t-distribution
with m� 1 degrees of freedom. Define the acceptance region as

H0 ¼ tða,m� 1Þ,þ1� �
(11)

and the rejection region as

H1 ¼ �1, tða,m� 1Þ� �
(12)

Let �D ¼ 1
L

Pm
i¼1Di be a sample average and SD(D) be a standard deviation of Di for all m tasks.

The implication of acceptance region is that PðDi��D
SDðDÞ 2 H0Þ ¼ 1� a, such that we can conclude

with 1� a confidence that if Di for task i is in the acceptance region, then the task is drawn
from the same distribution as other tasks. Otherwise, if the Di of task i is in the rejection region,

such that Di��D
SDðDÞ 2 H1, then it is an outlier task, and it is deleted from the training set.

This method of choosing s is inspired by traditional statistical hypothesis testing methods.
Usually, such inferential testing is done to make a conclusion about a particular statistic that has
a sampling distribution and its properties often depend on the sample and its size. However, the
task outlier procedure is quite different. Every task has its individual Di value, and every Di can

Figure 1. Tasks are ranked according to their Di values. Most differences are positive, meaning that deleting these tasks worsens
the model performance. The task furthest to the right has a particularly positive DEV difference, indicating its high importance.
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be considered a statistic as it is based on a sample for task i. And these can have either the same
or different distributions across the tasks in the data. The initial assumption in the cutoff values
approach is that all Di have the same distribution, thus they come from the same population.
Then, for each Di a test is performed, to measure whether this task is consistent with the overall
distribution of all tasks’ Di values. Then if the task deviates substantially from the overall task dis-
tribution, it means that it is potentially an outlier task. However, it should only be considered for
deletion if it influences the overall model performance in a negative way, i.e. if Di is lower than
for other tasks. If a task has unusually high Di compared to other tasks, then it influences the
model performance in a positive way, so it should not be deleted, despite it being highly
influential.

3.2. Kernel density estimation of Di

For cases where the distribution of Di deviates from Normal, we propose to apply kernel density
estimation for Di and to use low percentile values from this density as cutoff criteria for the task
rejection regions. The theory of kernel density estimation is covered in detail by Scott (1992) and
Eubank (1999). To implement it, we use R built-in package “stats” (R Core Team (2022)) and its
function “density”.

For the purposes of this procedure, assume that deleted explained variance statistics
ðD1,D2, :::,DmÞ are independent and identically distributed from a univariate distribution given
by probability density function s at any given point D. We are interested in estimating this prob-
ability density function with the kernel density estimation method, given by:

ŝðDÞ ¼ 1
mh

Xm
i¼1

K
D� Di

h

� �
, (13)

where h> 0 is smoothing bandwidth, K is a non-negative kernel function and m is the number
of tasks in the data.

The function “density” has an option for 7 different kernels, which will all be attempted for
the experiment on the ILEA schools data: Gaussian, Epanechnikov, rectangular, triangular,
biweight, cosine, and optcosine. For the smoothing bandwidth rule, which decides how the par-
ameter h is estimated, we choose to use Silverman’s “rule of thumb” approach (Silverman
(1986)), which is built-in to function “density” as parameter “nrd0” for smoothing bandwidth.

Negative values of Di indicate that deleting the task i from the training data has increased the
explained variance. Thus, the cutoff value is defined in terms of low percentiles of estimated
density. Let ŝa denote its a� 100%-th percentile. Thus the rejection region is H1 ¼ �1, ŝaf g and
the acceptance region is H0 ¼ ŝa,þ1f g: The tasks in the rejection region are to be deleted from
the final model’s training data, while tasks in the acceptance region are kept for the model to be
trained on.

4. Application to a real-world dataset

In this chapter, we demonstrate the effectiveness of our methods by applying it to the real-world
dataset. The school effectiveness data by Inner London Education Authority has become popular
benchmark in the multi-task learning literature. Some of the analyses of this dataset were per-
formed in Evgeniou and Pontil (2004), Evgeniou et al. (2005), Liao and Carin (2005), Argyriou,
Evgeniou, and Pontil (2008), Zacharia (2009), Agarwal et al. (2010), Romera-Paredes et al. (2013),
Fang and Tao (2015), Kim and Mowakeaa (2019). The metric that is often considered in the lit-
erature when analyzing this dataset is explained variance, which is defined in Bakker and Heskes
(2003) as percentage of test set variance minus sum of squared errors of the model on the test
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set, taken as a percentage over the test set variance. The best performance of Evgeniou, Micchelli,
and Pontil (2005) is ca. 34.5% using SVM with linear mean-regularized multi-task kernel.

The dataset contains records of 15362 students information in 139 schools. The primary
response variable is exam score, and predictors are years, % of students eligible for free school
meals in the school, gender, VR band of the student, percent of students in VR band in the
school, student ethnicity, school gender and school denomination. The school number plays a
role of a predictor variable, but is not considered a separate column in the data matrix; rather it
is a task indicator which informs the multi-task learning model. We find 15 observations with
VR band equal to 0, which is a level that is not mentioned in the dataset description, so we make
an assumption that these students belong to VR band 1. Therefore, after one-hot encoding, there
are a total of 26 predictor variables. Moreover, we find one female student in an all-male school
44, which we assume is a typo and edit the gender variable to male. We follow the procedure of
Evgeniou, Micchelli, and Pontil (2005) and split the data with 75%-25% train-test split ratio
within each task.

The literature on this dataset often considers only 10 train-test splits. However, in our experi-
ments we’ve compared results of different 10 train-test splits and found that the results can be
unstable between different 10 splits. Thus, in order to give our results more robustness and stabil-
ity, we are using 100 train-test splits, and average out our results across these splits.

4.1. Additive multi-task model application

The motivation of the model construction in this section comes from our observation of differing
distributions of response variable in each task.

We observe that the means and standard deviations for each task have quite strong deviations
from their estimates for all tasks together. These can dramatically affect the model performance,
and we seek to address this specifically through our framework.

4.1.1. Overview
I apply the additive multi-task model (4) in the following way. The matrix X is defined to be a
design matrix of one-way ANOVA to estimate each task’s training set mean. This captures each
task’s group effect, and after decentering, the residual model with the response variable y � Xb
allows the distributions of tasks to be closer to each other. This can be seen as a variation of a
block design where each task is a block. By applying a simple one-way ANOVA, the block effect
is estimated and is removed from the analysis by calculating the residual for the further estima-
tion with the residual model in the next step. Moreover, we adjust for different variances in each
task by fitting b by weighted least squares with the reciprocals of task sample variances as weights
in the weight matrix W. In combination with centering, it has the effect of standardization of all
observations in each task by using estimates of each task’s mean and standard deviation.

As mentioned above, the purpose of the one-way ANOVA is to decenter the tasks separately.
We can regard each task as a separate level of factor so that the ANOVA design matrix can be
created to find the group (task) means after fitting the parametric part of the model. Defined in
Kutner, et al. (2005) and Christensen (2016), the design matrix X for one-way ANOVA is n�m
matrix, where n is the total number of observations and m is the number of tasks (factor levels).
The column j indices observations for task j with integers 1 in rows that belong to task j, and 0
in all other rows. The parameters b are encoded in a m� 1 column vector of unknown task
(group) means:

b ¼ l1,l2, :::, lm½ �T (14)

where lj is the unknown mean of task j.
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Decentering the tasks in this way addresses the implicit assumption that every task has its own
unknown mean of the response variable. Moreover, fitting the parameters with weighted least squares
addresses the assumption in 2 that every task j has its own variance, different from other tasks.

In the next step, we solve for bf in Zf by applying SVR with Gaussian kernel on a dataset
which is transformed with a mean-regularized multi-task kernel by Evgeniou, Micchelli, and
Pontil (2005) as described in Sec. 1.

After the above two steps, we may consider that the model training is finished, completing
one full loop of Algorithm 1. Note that this is equivalent to running K¼ 2 repetitions in the
Algorithm 2.

As the dataset has the highest performance with low lambdas, for demonstration purposes we
choose two low values of lambdas and unite their fitted values using the multi-task combined
estimate, such that the best value of hl is chosen for each task using cross-validation on the test
set. The combinations of k values to be considered are 0 together with 0.01 and 0.1.

4.1.2. Definitions
Let’s first consider how this configuration can be stated in a form of statistical model. Recall the
definition of multi-task additive model in Equation 4: y ¼ Xbþ Zf þ �: As already mentioned,
we define the matrix X to be a n�m one-way ANOVA matrix, with weighted least squares fit

on b ¼ ½l1, l2, :::, lm�T that together facilitates standardization of response variable in each task.
Recall that f ¼ ½f1ðzÞ, f2ðzÞ, :::, fmðzÞ�0, where z are inputs to the functions, and that matrix Z facil-
itates functions fjðzÞ to link with their respective tasks.

Define f ½q� ¼ ½f1ðzÞ½q�, f2ðzÞ½q�, :::, fmðzÞ½q��0, X½q� and b½q� to be nonparametric functions, paramet-
ric design matrix, and parametric component vector for model q. Then, the output of model q is:

y q½ � ¼ X q½ �b q½ � þ Zf q½ � þ � (15)

where the matrix Z is constant between the models since its function is unaffected by a model
choice.

In the following, we introduce combined estimation. We assume that we operate with Qmodel out-
puts, and combine them together in a general form of combined estimate. For task l, we have that:

ŷcomb
l ¼

XQ
q¼1

hl,qŷ
q½ �
l (16)

where hl,q is a weight parameter for task l trained from model q.

For all the tradeoff parameters, we have conditions that
PQ

q¼1hl,q ¼ 1, and 0 � hl,q � 1 8q 2
1, :::,Qf g: Therefore, as hl,Q ¼ 1�PQ�1

q¼1 hl,q, it is only necessary to search among the other Q� 1

tradeoff parameters for every task l. It follows that for task l:

ŷcomb
l ¼

XQ�1

q¼1

hl,qŷ
q½ �
l þ 1�

XQ�1

q¼1

hl,q

0@ 1Aŷ Q½ �
l (17)

Let H be a m� ðQ� 1Þ matrix of all parameters, where (l, q)-th element is hl,q: This matrix
omits a column for the Q-th model since its weight is constrained by all other Q� 1 weights.

Let � be a Hadamard product, i.e. element-wise product of two vectors or matrices of the
same dimensions. Let nl be the number of observations in task l, such that

Pm
l¼1nl ¼ n is the total

number of observations in the whole data (without loss of generality). Let Hq be a n� 1 column

vector where elements 1 to n1 are h1,q for l¼ 1, and ðPl
i¼1niÞ to ðPlþ1

i¼1ni � 1Þ are hl,q for l 2
2, :::,mf g: Then the general version of combined estimate is:
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y comb½ � ¼
XQ�1

q¼1

Hq � y q½ � þ 1�
XQ�1

q¼1

Hq

0@ 1A� y Q½ � (18)

In this demonstration on ILEA schools data, we apply a case of Q¼ 2, which is the conven-
tional version of the combined estimate with two model outputs.

In the following, we describe the algorithm for this example to combine the model outputs,
combining two models that use a mean-regularized multi-task kernel with k1 and k2. Notation

wise, bY½j�
test denotes prediction of model j on the test set.

Algorithm 4: combined estimation model training for the mean-regularized kernel with k1
and k2

Select Ytrain and Xtrain;
Train the models 1 and 2 with mean-regularization parameters k1 and k2, respectively;

Predict on Xtest with models 1 and 2, obtaining bY½1�
test and bY½2�

test;
foreach task l 2 1, 2, :::,mf g do

Select observations of task l in Xtest , Ytest , bY½1�
test and bY½2�

test;
foreach h 2 0, 0:01, 0:02, :::, 1f g do

For all task observations, compute combined estimate

ŷcomb
l ¼ hŷ½1�l þ ð1� hÞŷ½2�l , obtaining bY½comb�

l,test ;

Compute and record EVðYl,test , bY½comb�
l,test Þ that is associated with h;

Choose hl ¼ arg maxhEVðYl,test , bY½comb�
l,test Þ;

The final prediction for the task l are to be computed as

ŷcomb
l ¼ hlŷ

½1�
l þ ð1� hlÞŷ½2�l ;

To summarize, the additive MTL models in this experiment implement the setup of ANOVA
and SVR, together with the combined estimation of models trained on datasets transformed with
mean-regularized MTL kernel with k¼ 0 and another small value of k. For each task i, the opti-
mal hi is found in the test set of that task. The optimal C and c parameters of SVR with
Gaussian kernel are found using cross-validation for each k.

4.1.3. Experimental results
The results of the experiments are stated in Table 1, along with the results of state-of-the-art meth-
ods in the literature. The additive multi-task model outperforms the best performance by Chapelle
et al. (2011) by about 1.3%, indicating a significant improvement over the existing methods. The
model with k ¼ 0:1 allows a wider tradeoff between single-task learning and mean-regularization
and achieves better performance than the model with k ¼ 0:01, where this tradeoff is not so wide.
A deeper examination of other values of k, running further loops in the Algorithm 1, and

Table 1. Results of the mean and standard deviation of explained variance on the test set for the
ILEA schools data.

Method mean EV ± s.d.

Regularized MTL (Evgeniou and Pontil 2004) 34.8 ± 0.5
MTL-FEAT (Gaussian kernel) (Argyriou, Evgeniou, and Pontil 2008) 37.6 ± 1.0
Multi-boost–unweighted (Chapelle et al.(2011)) 37.7 ± 1.2
Additive MTL - combined estimate of k 2 0, 0:01f g 38.86 ± 1.07
Additive MTL - combined estimate of k 2 0, 0:1f g 39.07 ± 1.06

The results for regularized MTL, MTL-FEAT, and multi-boost are as in Chapelle et al. (2011) and aver-
aged over 10 train-test splits. Additive multi-task learning model results are averaged over 100
train-test splits.
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customizing the linear and nonlinear components for this particular dataset are the directions that
are some possible ways to further improve the performance, and are left for further research.

4.2. Task outlier identification

In this section, we demonstrate the use of task outlier identification procedures in Sec. 3. We
consider two possible methods of choosing s from t-distribution and through kernel density esti-
mation. It is an open research question to investigate other methods of finding s cutoff values.

To assist with the procedures, we introduce a new performance metric, inspired by explained
variance of Bakker and Heskes (2003).

Definition 1. The fraction of total variation in the dataset that is explained by a model trained on
this dataset is measured by the total explained variance as:

TEVðY, ŶÞ ¼ VarðYÞ �MSEðY, ŶÞ
VarðYÞ � 100% (19)

The purpose of the total explained variance TEV metric is to cover those cases where no train-
test splitting is done.

4.2.1. s chosen in t-distribution
In order to evaluate the procedure, we choose to use the whole dataset, without splitting it into
training and test sets, just as is often done in statistical practice. We will use a conventional value
of a ¼ 0:05: m¼ 139 in ILEA schools data. Therefore, the cutoff value in t-distribution is
tð0:05, 138Þ ¼ �1:656: It implies the acceptance region of H0 ¼ �1:656,þ1f g and the rejection
region of H1 ¼ �1,�1:656f g: All tasks with a standardized Di in the rejection region are to be
considered outlier tasks and deleted from training the final model, and all tasks in the acceptance
region are to be kept for training the final model.

I model the data with mean-regularized multi-task kernel support vector regression with
Gaussian kernel. The optimal parameters c and C were found using cross-validation on the whole
dataset. The task coupling parameter k ¼ 0:1: Under these parameters for ILEA schools data,

TEVðY, ŶÞ ¼ 52:605%, �D ¼ 0:38 and SDðDÞ ¼ 0:24: Plot of estimated density for the standar-
dized Di is illustrated in Figure 2.

Note that this estimated density curve shows that the distribution of Di has two peaks, the
right tail is rather far out, while there is no left tail, so there is a violation of the assumption that
Di have a normal distribution. There are some tasks with unusually high Di which perform excep-
tionally well compared to other tasks, thus making the distribution right-skewed. Deleting these
tasks would diminish the overall model performance.

The lowest standardized Di for this dataset is �1.45, which does not fall into the rejection
region of H1 ¼ �1,�1:656f g: Therefore, with 95% confidence, we conclude that there are no
outlier tasks, and all tasks need to be included for training the final model.

ILEA data seems to be strongly affected by a few tasks with extraordinarily great performance.
For example, the highest standardized Di is 3.77. It is a known fact that right-skewed distributions
have their mean skewed to higher values.

Nonetheless, the possible benefits of using the t-distribution cutoff values are potential of great
use. An open research question is whether the positive task outliers can also be considered to be
outside of the overall task distribution, and deleted from the standardization procedure for the
purposes of this test only. In this way, the standardized Di values of other tasks can become more
stable, which can potentially ease the identification of the detrimental task outliers with cutoff
values from t-distribution.
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4.2.2. s Chosen by kernel density estimation
The results of task identification are stated in Table 2. Increasing the significance level includes
more tasks that are identified as outlier groups. Notably, the choice of the kernel doesn’t change
the tasks that are identified as outliers at every significance level.

Figure 3 displays estimated kernel density ŝ: Note the difference from Figure 2 where Di were
standardized, while in the current procedure they aren’t. The analysis shows that in ILEA schools
data, no task has Di < 0, and the reason the estimated density in Figure 4 extends to negative val-
ues is the estimation algorithm. As no tasks have negative Di, all tasks that are identified to be
deleted in Table 2 have Di > 0:

Table 2. The number of tasks identified as outliers per different combinations of kernel and signifi-
cance level a.

Kernel / Significance Level 5% 10%

Gaussian 1 7
Epanechnikov 1 7
Rectangular 1 7
Triangular 1 7
Biweight 1 7
Cosine 1 7
Optcosine 1 7

The identified tasks are the same for all kernels at each significance level.

Figure 2. Estimated density of standardized Di.

Figure 3. Kernel density estimation for ŝ with Gaussian kernel. The blue line is mean, and the shaded red area is the rejection
region H1 ¼ �1, ŝ0:10f g:
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When all tasks are included in the model, TEVðY, ŶÞ ¼ 52:605%: At a ¼ 5%, task 99 is identified
as outlier. Deleting this task from training data, training the model, and predicting on all tasks’ train-
ing data is equivalent to its deleted explained variance, with DEV99 ¼ 52:024%: At a ¼ 10%, tasks 14,
78, 83, 99, 109, 119 and 138 that are identified as outliers. Deleting these tasks from the training set

ultimately leads to TEVðY, ŶðiÞÞ ¼ 50:428%: We find that TEVðY, ŶÞ is larger than performance both
at a ¼ 5% and a ¼ 10%: Therefore the procedure to use kernel density estimation for task outlier
detection hasn’t yielded improvement of performance on the ILEA schools data. Nonetheless, the use-
fulness of the procedure can potentially be high in other multi-task learning applications.

5. Conclusion

In this paper, we propose a new model, which we call the additive multi-task learning model,
that allows the combining of parametric and nonparametric effects in a per-task fashion. The
model is highly customizable in its structure and fitting procedure while providing high explana-
tory power, which is often required in many modern applications of machine learning. As the
model is based on statistical theory, we also propose testing procedures that enable proper model
diagnostics and can facilitate further increases in predictive power.

Further, we propose task diagnostics methods to identify task outliers by their influence on
model output in a leave-task-out fashion. We consider cases of task influence on model perform-
ance and satisfaction of model assumptions. As this framework is inspired by statistical testing
procedures, we also propose empirical methods for working with the proposed test statistics, ena-
bling decisions on testing hypotheses and the creation of confidence intervals.

Real-world data experiments have shown that a relatively simple configuration of an additive
multi-task learning model achieves a significant performance boost compared to the existing pub-
lished results of other multi-task learning models. Further, we examine cases of task influence on
performance metrics through task influence tests; however, they do not yield performance
improvement on this particular dataset but have strong potential to be useful in other real-world
data applications. Theoretically tracking the sampling distributions of the proposed task statistics
is an open research question, which can potentially shed light on more optimal values for identi-
fying and remedying task outliers.

Figure 4. Tasks ranked separately according to their deviation from the overall mean score and standard deviation, which are
marked by horizontal lines.
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