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In this research, we propose simultaneous confidence intervals for all pairwise multiple comparisons in
a two-way unbalanced design with unequal variances, using a parametric bootstrap approach. Simulation
results show that Type 1 error of the multiple comparison test is close to the nominal level even for small
samples. They also show that the proposed method outperforms Tukey–Kramer procedure when variances
are heteroscedastic and group sizes are unequal.
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1. Introduction

Consider the ANOVA problem of ab normal populations with unequal population variances σ 2
ij

and unequal group sizes nij. The two-way ANOVA model is as follows:

Yijk = μ + αi + βj + γij + εijk , (1)

where εijk
iid∼ N(0, σ 2

ij ), i = 1, 2, . . . , a, j = 1, 2, . . . , b, k = 1, 2, . . . , nij. αis, βjs and γijs are sub-
ject to the constraints (first introduced by Scheffé [1] to solve the model identifiability problem)

a∑
i=1

wiαi = 0,
b∑

j=1

vjβj = 0,
a∑

i=1

wiγij = 0,
b∑

j=1

vjγij = 0, (2)

where w1, . . . , wa and v1, . . . , vb are nonnegative weights. The multiple comparison procedure
(MCP) applies when the family of interest is the set of all pairwise comparisons of factor-level
means. Pairwise comparisons of the factor A level means μi· can be described as

H0 : μi· − μi′ · = 0 vs. Hα : at least one of μi· − μi′ · �= 0. (3)

Pairwise comparisons of the factor B level means μ·j can be described as

H0 : μ·j − μ·j′ = 0 v.s. Hα : at least one of μ·j − μ·j′ �= 0. (4)
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2 G. Zhang

Scheffé’s [1] method, the Bonferroni inequality-based method, and Tukey [2] method are widely
used for MCP among the group means for balanced design with constant variance. Hochberg and
Tamhane [3, p.81] showed that the Tukey procedure is optimal in the sense of that it gives the
shortest confidence intervals given the joint confidence level at least 1 − α. In practice, unequal
treatment sample sizes are often encountered. Several approximation procedures have been devel-
oped to deal with such imbalance. The most commonly used approximation procedure is the
Tukey–Kramer procedure.[2,4] Hayter [5] proved that the Tukey–Kramer approximation is con-
servative. Dunnett,[6] Stoline,[7] and Spurrier [8] showed that Tukey–Kramer approximation
yields narrower confidence intervals than other approximation procedures unless the treatment
sample sizes are severely imbalanced. Cheung and Chan [9] extended Tukey’s procedure to two-
way unbalanced designs. However, evaluating a b − 1 (or a − 1) dimensional integral in their
methods brings computational difficulties.

Research on MCP under the assumption of heteroscedasticity is limited. Kaiser and Bowden
[10] discussed simultaneous confidence intervals for all linear contrasts in an one-way ANOVA
with unequal variances. Recently, Krishnamoorthy et al. [11] proposed a parametric bootstrap (PB)
test for equality of factor means in one-way ANOVA. Xu et al. [12] showed that PB test performs
better than the generalized F-test for two-way ANOVA and also performs very satisfactorily even
for small samples. Inspired by Krishnamoorthy et al.,[11] Zhang [13] proposed PB MCP for one-
way ANOVA. To our knowledge, there is no practical MCP available for two-way unbalanced
design with unequal variances. Our research intends to fill this gap.

This paper is organized as follows. In Section 2, we briefly review Tukey–Kramer’s methods. In
Section 3, we propose PB algorithm of multiple comparisons for two-way ANOVA. In Section 4,
we present simulation studies and compared our proposed methods to the Tukey–Kramer
procedure. Section 5 gives conclusions.

2. Tukey–Kramer MCP

For unbalanced data, the most commonly used procedure is the Tukey–Kramer procedure.[2,4]
The Tukey–Kramer procedure utilizes the studentized range denoted by

q(r, v) = w

s
, (5)

where degrees of freedom of the range distribution are r = a or b and v = N − ab, with N =∑
i

∑
j nij; s is the square root of an estimate s2 of the constant variance σ 2, and w is the range

for the set of observations. Tukey–Kramer procedure gives the confidence interval estimates of
μi· − μi′ · as

ȳi·· − ȳi′ ·· ± qa,N−ab(α)
√

MSE

√
1

2

(
1

ni·
+ 1

ni′ ·

)
,

where ni· = ∑b
j=1 nij, ni′ · = ∑b

j=1 ni′j, s2
ij = (1/(nij − 1))

∑nij

k=1(yijk − ȳij·)2.

MSE = SSE

N − ab
= 1

N − ab

∑
a

∑
b

(nij − 1)s2
ij

and qa,N−ab(α) is the upper αth quantile of the studentized range distribution with a, N − ab
degrees of freedom. Similarly, Tukey’s multiple comparison confidence limits for all pairwise
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Journal of Statistical Computation and Simulation 3

comparisons μ·j − μ·j′ with family confidence coefficient of at least 1 − α are

ȳ·j· − ȳ·j′ · ± qb,N−ab(α)
√

MSE

√
1

2

(
1

n·j
+ 1

n·j′

)
,

where n·j = ∑a
i=1 nij and n·j′ = ∑a

i=1 nij′ , and qb,N−ab(α) is the upper αth quantile of the
studentized range distribution with b, N − ab degrees of freedom.

3. The PB method for multiple comparisons in a two-way unbalanced design with
unequal variances

Krishnamoorthy et al. [11] first introduced PB method for testing equality of factor means (overall
test) in one-way ANOVA. The PB method has been shown to be the best among nine current
existing methods for overall test under the assumption of heteroscedastic variances.[14] Inspired
by Krishnamoorthy et al.,[11] Zhang [13] first introduced PB method to MCP in one-wayANOVA,
and showed that PB method works very well. In this section, we extend our work on PB method
from one-way design to two-way unbalanced design with unequal variances. We will first discuss
MCP for factor A level means, then discuss MCP for factor B level means.

3.1. MCP for factor A level means

In this section, we propose the MCP for factor A level means μi·. First we discuss the point
estimator and variance estimator of μi·. Next we derive the PB pivotal variables. Last, we propose
the test statistic and computational algorithm.

Under heteroscedastic variances and unequal sizes, the estimate of factor-level means would
be a weighted average of the corresponding cell means. We propose the estimator of factor A level
means ui· as follows:

Ȳi·· =
∑

j vjȲij∑
j vj

=
∑

j vj(μ + αi + βj + γij + ε̄ij)∑
j vj

= μ + αi +
∑

j vjβj∑
j vj

+
∑

j vjγij∑
j vj

+
∑

j vj ε̄ij∑
j vj

= μ + αi +
∑

j vj ε̄ij∑
j vj

,

where vjs are the nonnegative weights described in Equation (2), Ȳij = ∑nij

k=1 Yijk/nij are cell
means, and ε̄ij ∼ N(0, σ 2

ij /nij). The following two sets of weights vi are suggested

v1 = v2 = · · · = vb = 1

b
(6)

and

v1 = n.1

N
, v2 = n.2

N
, . . . , vb = n.b

N
. (7)

In general, σ 2
ij s are unknown, and are replaced by S2

ij = ∑nij

k=1(Yijk − Ȳij)
2/(nij − 1). Let s2

ij be
the observed value of S2

ij, and ȳij be the observed value of Ȳij. It is easy to show that variance of

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ew
 M

ex
ic

o]
 a

t 2
0:

44
 1

5 
A

ug
us

t 2
01

4 



4 G. Zhang

Ȳi·· is

v(Ȳi··) = 1

(
∑

j vj)2

⎛
⎝∑

j

σ 2
ij

nij
v2

j

⎞
⎠ (8)

and estimate of the variance is

v̂(Ȳi··) = 1

(
∑

j vj)2

⎛
⎝∑

j

s2
ij

nij
v2

j

⎞
⎠ . (9)

The PB pivot variable can be developed as follows. For a given (ȳ11,ȳ12,. . . , ȳab; s2
11, s2

12, . . . , s2
ab),

ȲBij ∼ N(0, s2
ij/nij), S2

Bij ∼ s2
ijχ

2
nij−1/(nij − 1). Hence ȲBij

d= Zi(sij/
√

nij) and S2
Bij

d= s2
ijχ

2
nij−1/

(nij − 1), where
d= means the same distribution. Let ȲBi·· be the PB estimator of μi·, we have

the following variance estimate:

v(ȲBi··) = 1

(
∑

j vj)2

⎛
⎝∑

j

s2
ij

nij
v2

j

⎞
⎠ . (10)

The test statistic qA
ii′ can be formed as the following equation:

qA
ii′ = |ȲBi·· − ȲBi′ ··|√

v(ȲBi··) + v(ȲBi′ ··)
, (11)

which has the same distribution as

qA
ii′

d=
∣∣∣∑

j vjZi(sij/
√

nij)∑
j vj

−
∑

j vjZi′ (si′ j/
√ni′ j)∑

j vj

∣∣∣√
(1/(

∑
j vj)2)

∑
j(s

2
ijχ

2
nij−1/nij(nij − 1))v2

j + (1/(
∑

j vj)2)
∑

(s2
i′jχ

2
ni′ j−1/ni′j(ni′j − 1))v2

j

,

(12)

for i < i′, i = 1, . . . , a − 1, i′ = i + 1, . . . , a. For a given (n11, n12 . . . , nab), (ȳ11, . . . , ȳab) and
(s2

11, . . . , s2
ab), let

qA0
ii′ = |ȳi·· − ȳi′ ··|√

v(ȲBi··) + v(ȲBi′ ··)
for i = 1, . . . , a − 1, i′ = i + 1, . . . , a. (13)

Given a significance level α, the multiple comparison confidence limits for simultaneous
comparisons μi· − μi′ · with family confidence coefficient at least 1 − α are

ȳi·· − ȳi′ ·· ± qA
α

√
v(ȲBi··) + v(ȲBi′ ··), (14)

where qA
α can be estimated using the PB method given in Algorithm 1.

Algorithm 1 For a given (n11, n12 . . . , nab), (ȳ11, . . . , ȳab) and (s2
11, . . . , s2

ab):
For l = 1, . . . , L
Generate Zi ∼ N(0, 1) and χ2

nii′ −1, i = 1, . . . , a
Compute qA

ii′ using (12) for i = 1, . . . , a − 1, i′ = i + 1, . . . , a
Find ql = max(qii′)

(end loop)
qA

α is the 1 − α percentile of the simulated distribution of q.
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Journal of Statistical Computation and Simulation 5

3.2. MCP for factor B level means

PB MCP for factor B level means can be derived similarly. We propose the following estimators
for factor B level means u·j, j = 1, 2, . . . , b,

Ȳ·j· = μ + βj +
∑

i wiε̄ij∑
i wi

, (15)

where wi’s are the nonnegative weights described in Equation (2). The following two sets of
weights wi are suggested

w1 = w2 = · · · = wa = 1

a
, (16)

w1 = n1.

N
, w2 = n2.

N
, . . . , wa = na.

N
. (17)

Let ȲB·j· be the PB estimator of factor B level mean μ·j. The variance of ȲB·j· can be found as
follows:

v(ȲB·j·) = 1

(
∑

i wi)2

(∑
i

s2
ij

nij
w2

i

)
. (18)

The test statistic

qB
jj′ = |ȲB·j· − ȲB·j′ ·|√

v(ȲB·j·) + v(ȲB·j′ ·)
(19)

has the same distribution as

qB
jj′

d=
∣∣∣∑

i wiZj(sij/
√

nij)∑
i wi

−
∑

i wiZj′ (sij′ /
√nij′ )∑

i wi

∣∣∣√
(1/(

∑
i wi)2)

∑
i(s

2
ijχ

2
nij−1/nij(nij − 1))w2

i + (1/(
∑

i wi)2)
∑

(s2
ij′χ

2
nij′ −1/nij′(nij′ − 1))v2

j′

(20)

for j < j′, j = 1, . . . , b − 1, j′ = j + 1, . . . , b. For a given (n11, n12 . . . , nab), (ȳ11, . . . , ȳab) and
(s2

11, . . . , s2
ab), let

qB0
jj′ = |ȳ·j· − ȳ·j′ ·|√

v(ȲB·j·) + v(ȲB·j′ ·)
for j = 1, . . . , b − 1, j′ = j + 1, . . . , b. (21)

Given a significance level α, the multiple comparison confidence limits for simultaneous
comparisons μ·j − μ·j′ with family confidence coefficient at least 1 − α are

ȳ·j· − ȳ·j′ · ± qB
α

√
v(ȲB·j·) + v(ȲB·j′ ·), (22)

where qB
α can be estimated using the PB method given in Algorithm 2.

Algorithm 2 For a given (n11, n12 . . . , nab), (ȳ11, . . . , ȳab) and (s2
11, . . . , s2

ab):
For l = 1, . . . , L
Generate Zi ∼ N(0, 1) and χ2

njj′ −1, j = 1, . . . , b

Compute qB
jj′ using (20) for j = 1, . . . , b − 1, j′ = j + 1, . . . , b

Find ql = max(qjj′)

(end loop)
qB

α is the 1 − α percentile of the simulated distribution of q.
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6 G. Zhang

4. Simulations

In this section, we use simulation to study the proposed MCP of two-way ANOVA under the
assumption of heteroscedastic variances and unequal sizes. We compare our method with Tukey–
Kramer procedure. The simulation settings follow from Krishnamoorthy et al. [11] and Xu
et al.[12]

The tests we consider are location-scale invariant. Consider Yijk = μij + εijk , i = 1, . . . , a, j =
1, . . . , b and εijk ∼ N(0, σij). Without loss of generality, we take μij = 0 in simulation stud-
ies. The sample statistics ȳij and s2

ij are generated independently as ȳij ∼ N(0, σ 2
ij /nij), s2

ij ∼
σ 2

ij χ
2
nij−1/(nij − 1).

The simulation study was performed with factors: (1) number of factor levels: a = 2
and b = 3; (2) population standard deviation σ i = (σ11, . . . , σ23) : σ2

1 = (1, 1, 1, 1, 1, 1), σ2
2 =

(0.1, 0.1, 0.1, 0.5, 0.5, 0.5), σ2
3 = (1, 1, 1, 0.5, 0.5, 0.5), σ2

4 = (0.1, 0.2, 0.3, 0.4, 0.5, 1.0),

Table 1. Simulation results of multiple comparisons with α = 0.05. Numbers in the
table are estimated Type 1 errors. Tukey–Kramer methods (TKA and TKB) work well
for balanced design with unequal variances, but are very conservative for unbalanced
design with unequal variances in general. The proposed PB methods (MCPA1, MCPA2,
MCPB1, MCPB2) work well for all the settings.

α = 0.05

σ2
i MCPA1 MCPA2 TKA MCPB1 MCPB2 TKB

n1 σ2
1 0.0375 0.0515 0.0506 0.0495 0.0460 0.0490

σ2
2 0.0465 0.0530 0.0535 0.0515 0.0565 0.0571

σ2
3 0.0400 0.0460 0.0503 0.0380 0.0420 0.0497

σ2
4 0.0470 0.0395 0.05395 0.0450 0.0510 0.0576

σ2
5 0.0515 0.0415 0.0527 0.0515 0.0415 0.0517

σ2
6 0.0520 0.064 0.0674 0.0490 0.0505 0.0836

n2 σ2
1 0.0395 0.0520 0.0500 0.0440 0.0585 0.0490

σ2
2 0.0505 0.0480 0.0503 0.0430 0.0480 0.0516

σ2
3 0.0415 0.0455 0.0527 0.0510 0.0465 0.0523

σ2
4 0.0520 0.0495 0.0512 0.0475 0.0380 0.0574

σ2
5 0.0585 0.0550 0.0494 0.0470 0.0500 0.0495

σ2
6 0.0500 0.0550 0.0614 0.051 0.0460 0.0746

n3 σ2
1 0.0480 0.0520 0.0498 0.0445 0.0390 0.0497

σ2
2 0.0470 0.0395 0.0218 0.0430 0.0500 0.0502

σ2
3 0.0620 0.0545 0.0731 0.0465 0.0415 0.0547

σ2
4 0.0440 0.0405 0.0270 0.0450 0.0435 0.0462

σ2
5 0.0430 0.0435 0.0428 0.0460 0.0375 0.0482

σ2
6 0.0545 0.0540 0.0305 0.0490 0.0540 0.0573

n4 σ2
1 0.0530 0.0485 0.0501 0.0520 0.0495 0.0500

σ2
2 0.0525 0.0485 0.0085 0.0505 0.0570 0.0473

σ2
3 0.0555 0.0465 0.0973 0.0525 0.0500 0.0516

σ2
4 0.0595 0.0545 0.0133 0.0460 0.0490 0.0351

σ2
5 0.0405 0.0555 0.0364 0.0625 0.0495 0.0416

σ2
6 0.0485 0.0515 0.0087 0.0415 0.0480 0.0310
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Table 2. Simulation results of multiple comparisons with α = 0.1. Numbers in the
table are estimated Type 1 errors. Tukey–Kramer methods (TKA and TKB) work well
for balanced design with unequal variances, but in general very conservative for unbal-
anced design with unequal variances. The proposed PB methods (MCPA1, MCPA2,
MCPB1, MCPB2) work well for all the settings.

α = 0.1

σ2
i MCPA1 MCPA2 TKA MCPB1 MCPB2 TKB

n1 σ2
1 0.0850 0.1015 0.1012 0.0940 0.0825 0.0982

σ2
2 0.0895 0.0995 0.1076 0.0865 0.0945 0.1110

σ2
3 0.0890 0.0885 0.1019 0.0885 0.0800 0.1039

σ2
4 0.0965 0.1010 0.1055 0.0880 0.1000 0.1108

σ2
5 0.0915 0.0990 0.1018 0.0925 0.0915 0.1032

σ2
6 0.1110 0.1110 0.1265 0.099 0.0970 0.1356

n2 σ2
1 0.0945 0.0940 0.1011 0.1050 0.1010 0.1006

σ2
2 0.0920 0.1095 0.1038 0.0995 0.0985 0.1071

σ2
3 0.1020 0.1020 0.1014 0.0955 0.1000 0.1028

σ2
4 0.1020 0.0925 0.1020 0.1010 0.0885 0.1008

σ2
5 0.0895 0.1030 0.1007 0.1000 0.1040 0.1032

σ2
6 0.0990 0.1025 0.1098 0.0850 0.1075 0.1199

n3 σ2
1 0.0930 0.1035 0.0985 0.1015 0.0905 0.1017

σ2
2 0.0940 0.0860 0.0517 0.0835 0.0815 0.09865

σ2
3 0.0945 0.0915 0.1380 0.0985 0.0835 0.1069

σ2
4 0.0870 0.1125 0.0630 0.0890 0.0835 0.0911

σ2
5 0.0930 0.1035 0.0821 0.092 0.0965 0.0989

σ2
6 0.0910 0.1060 0.0652 0.1065 0.0980 0.0980

n4 σ2
1 0.0980 0.1045 0.1009 0.1025 0.0965 0.0997

σ2
2 0.0890 0.0940 0.0243 0.0980 0.1045 0.0960

σ2
3 0.1030 0.0890 0.1605 0.1005 0.1050 0.1060

σ2
4 0.1005 0.1075 0.0388 0.1120 0.0835 0.0710

σ2
5 0.0895 0.0905 0.0761 0.0940 0.0960 0.0895

σ2
6 0.1170 0.1015 0.0231 0.0940 0.0965 0.0535

σ2
5 = (0.3, 0.9, 0.4, 0.7, 0.5, 1), σ2

6 = (0.01, 0.1, 0.1, 0.1, 0.1, 1); (3) Significance level α: .05 and
.1; (4) group sizes ni = (n11, . . . , n23) : n1 = (5, 5, 5, 5, 5, 5), n2 = (10, 10, 10, 10, 10, 10), n3 =
(3, 3, 4, 5, 6, 6), n4 = (4, 6, 8, 12, 16, 20); (5) weight variable wi and vj: two sets for wi and two
sets for vj. For a given sample size and parameter configuration, we generated 2500 observed
vectors (ȳ11, . . . , ȳab, s2

11, . . . , s2
ab) and used 5000 runs to estimate Type 1 error (p-value). The

following is used to derive p-value of simultaneous tests (3): (a) calculate q0
m = max(qA0

ii′ ) using
Equation (13), use Algorithm 1 to find qA

α , the 1 − α percentile of the simulated distribution of q;
(b) repeat step (a) for 2500 times, p-value is the proportion of the 2500 simulations when q0

m > qA
α .

p-value for simultaneous tests (4) can be derived similarly.
Tables 1 and 2 give the results of multiple comparisons of the proposed methods and

Tukey–Kramer procedure for α = 0.05 and α = 0.1 respectively. In both tables, ‘MCPA1’
means MCP for factor A levels using weights from Equation (6); ‘MCPA2’ means MCP for
factor B levels with weights from Equation (7); ‘MCPB1’ means MCP for factor B levels
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with weights from Equation (16); ‘MCPB2’ means MCP for factor B levels with weights
from Equation (17). ‘TKA’ and ‘TKB’ are the Tukey–Kramer MCP for factor A and B lev-
els, respectively. Numbers in table are simulated estimates of Type 1 errors. We consider
four different sizes, n1 = (5, 5, 5, 5, 5, 5), n2 = (10, 10, 10, 10, 10, 10), n3 = (3, 3, 4, 5, 6, 6), n4 =
(4, 6, 8, 12, 16, 20). σ2

i is a vector of unequal variances, we consider σ2
1 = (1, 1, 1, 1, 1, 1), σ2

2 =
(0.1, 0.1, 0.1, 0.5, 0.5, 0.5), σ2

3 = (1, 1, 1, 0.5, 0.5, 0.5), σ2
4 = (0.1, 0.2, 0.3, 0.4, 0.5, 1.0),

σ2
5 = (0.3, 0.9, 0.4, 0.7, 0.5, 1), and σ2

6 = (0.01, 0.1, 0.1, 0.1, 0.1, 1).
From Tables 1 and 2, we can see that the estimates of Type 1 errors of the proposed MCP

are close to the nominal levels under all the settings. With balanced design n1 and n2, all the
simulated p-values of ‘TKA’ and ‘TKB’ are close to nominal levels even with unequal vari-
ances. However, for unbalanced design n3 and n4, Tukey–Kramer MCP only provide valid
inference for equal variance case σ2

1; when variance are unequal (σ2
2, σ2

3, σ2
4, σ2

5 and σ2
6), Tukey–

Kramer tests are very conservative in general. For example, α = 0.05, n3 = (3, 3, 4, 5, 6, 6) and
σ2

2 = (0.1, 0.1, 0.1, 0.5, 0.5, 0.5), simulated p-value of ‘TKA’ is 0.0218 compared with 0.0470
for ‘MCPA1’. With α = 0.05, n4 = (4, 6, 8, 12, 16, 20) and σ2

2 = (0.1, 0.1, 0.1, 0.5, 0.5, 0.5), sim-
ulated p-value of ‘TKA’ is only 0.0085 compared with 0.0525 for ‘MCPA1’. The advantages of
our proposed method are obvious.

5. Conclusions

MCP applies when the family of interest is the set of all pairwise comparisons of factor-level
means. In a two-way unbalanced design with unequal variances, facts such as degree of variance
and sample size heterogeneity, the shape of the population etc. can all affect the rates of Type I
error and power characteristics. In this research, we proposed an MCP for a two-way unbalanced
design with unequal variances based on PB approach. The proposed MCP is easy to use and have
computational advantage. Simulation studies show that Type 1 errors of MCP are close to the
nominal level for all the settings. They also show that the proposed method outperform Tukey–
Kramer comparison procedure when variances are heteroscedastic and group sizes are unequal.
Future research will consider MCP for multi-way unbalanced design with unequal variances.
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