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ABSTRACT

This research considers several log-normal distributions when variances are heteroscedas-
tic and group sizes are unequal. We proposed fiducial generalized pivotal quantities (FGPQ)-
based simultaneous confidence intervals for pairwise multiple comparisons of ratios of the
means. We also proved that the proposed confidence intervals have correct asymptotic
coverage. Simulation results show that the proposed methods work well in terms of cover-
age probabilities.
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1 Introduction

Log-normal distribution is widely used to describe the distribution of positive random variables
that exhibit skewness in biological, medical, and economical studies. The problem of equality
and multiple comparisons of the group means are common interests in many observational
and experimental data arising from several populations. Unfortunately, if sample variances are
unequal, the standard ANOVA tests don’t apply for log-normal distributions even after transfor-
mation, since the null hypothesis based on log-transformed outcomes is not equivalent to the
one based on the original outcomes (Zhou, Gao, & Hui, 1997).
Simultaneous confidence intervals for certain log-normal parameters are useful in many areas.
In pharmaceutical statistics, it is often of interest to compare the mean responses of two or



several drugs to ensure that they are (more or less) equally effective. For example, twenty-
three healthy male subjects each followed randomly allocated sequences of five treatments
(with one week washout period between different treatments to ensure no carry-over effects),
either no treatment or one of four active treatments from the same drug class was used to treat
the same illness (Bradstreet & Liss, 1995). One of the subjects are missing under treatment 2,
which leads to an unbalanced case. Since data followed a log-normal distribution, to find out
if there are any of the four active treatments similar to no treatment, or similar to each other,
we require a new method on multiple comparison procedure (MCP) for several log-normal
distributions.
In standard analysis of variance, Scheffé’s method (Scheffé, 1959), the Bonferroni inequality-
based method, and Tukey method (Tukey, 1953) are widely used for simultaneous pairwise
comparisons (SPC). When variances are heteroscedastic and group sizes are unequal, ex-
act frequentist tests are unavailable. In such situations, parametric bootstrap and generalized
p-value (Tsui & Weerahandi, 1989) procedures are commonly used. Weerahandi (1993) intro-
duced the concept of a generalized pivotal quantity. Later, Hannig, Iyer, and Patterson (2006)
introduced a subclass of Weerahandi’s generalized pivotal quantity, called fiducial generalized
pivotal quantities (FGPQs), which is essentially based on invertible pivotal relationships. In
their paper, they have described three general approaches for constructing FGPQs. Using the
idea of FGPQ, Hannig (2006) provided a method to construct MCP of means in the one-way
layout under heteroscedasticity. Xiong and Mu (2009) proposed two kinds of simultaneous in-
tervals based on FGPQ for all pairwise comparisons of treatment means in a one-way layout
under heteroscedasticity. Xiong and Mu (2009) pointed out that if sample sizes are sufficiently
large, Hannig (2006)’s simultaneous confidence intervals are equal to one of their proposed
intervals. Otherwise, Xiong and Mu (2009) methods perform better than Hannig (2006)’s meth-
ods. Using FGPQ for vector parameters, Zhang (2014) proposed MCP of means from inverse
Gaussian distribution. Zhang and Chen (2015) developed generalized confidence intervals
(GCI) and hypothesis tests for the correlation coefficients, and extended the results to compare
two independent correlations based on FGPQs. In this research, we propose FGPQ-based
MCP for ratios of means from several log-normal populations under heteroscedasticity.
This paper is organized as follows. In Section 2, we review notation of generalized variable
approach. In Section 3, we propose FGPQ-based simultaneous confidence intervals for ratios
of means from several log-normal distributions. In Section 4, we present simulation studies.
Section 5 gives conclusions.

2 Background: generalized variable approach

The principles of GCI are outlined by Weerahandi (1993). The idea of GCI is to construct con-
fidence intervals for cases where exact confidence intervals based on sufficient statistics are
not available. For example, we want to compare two means from the exponential distribution,
or from the log-normal distribution.
The confidence interval is constructed using a pivotal quantity (Weerahandi, 1993, page 900).
Let R be a function r(X;x,v), where X = (X1, · · · , Xn) is a random sample, x are the ob-



served values of X, and v = (θ, δ), where θ is an unknown parameter of interest from X and
δ is a vector of nuisance parameters. R is called a generalized pivotal quantity (GPQ) if it has
the following two properties:
Property A: R has a probability distribution free of unknown parameters,
Property B: The observed pivotal, defined as robs = r(x;x,v) does not depend on the nuisance
parameter δ.
Consider the problem of testing population parameter θ of a log-normal distribution,

H0 : θ ≤ θ0 vs. Hα : θ > θ0, (2.1)

where θ0 is a specified value of θ. The generalized test statistic T (X;x, θ; δ) has the same
properties of A and B as GPQ as well as one additional:
Property C: T is monotonically increasing or decreasing in θ.
If T is stochastically increasing in θ, The generalized p-value for testing the hypothesis in (2.1)
is defined by P = P [T (X;x, θ, δ) ≥ T (x;x, θ, δ)|θ = θ0]. If T is stochastically decreasing in θ,
The generalized p-value for testing the hypotheses in (2.1) is defined by P = P [T (X;x, θ, δ) ≤
T (x;x, θ, δ)|θ = θ0].
As pointed out by Weerahandi (1993), the problem of finding an appropriate generalized piv-
otal quantity is a non-trivial task. There is no systematic approach that can be used to find
pivotal quantities for all problems. Interested readers may refer to Iyer and Patterson (2002) for
generalized pivotal quantities of a large class of practical problems. In the following, we give
an example of constructing GPQ and GCI for log-normal distribution.
Example 1: Let Yij , i = 1, · · · , k, j = 1, · · · , ni be a random sample from k log-normal distri-
butions with parameters µi and σ2i , and let Xij = logYij . By definition, Xij , j = 1, · · · , ni is an
independent random sample from the k populations and has a normal distribution of N(µi, σ

2
i ).

For each sample, the sample mean and variance are defined as follows

X̄i =

∑ni
j=1Xij

ni
, S2

i =
1

ni − 1

ni∑
j=1

(Xij − X̄i)
2.

Let
Zi =

√
ni(X̄i − µi)/σi and U2

i = (ni − 1)S2
i /σ

2
i .

It is well known that Zi ∼ N(0, 1) and U2
i ∼ χ2

(ni−1) and they are independent. For each
population, define

Mi = E(Yij) = eµi+σ
2
i /2 and θi = log(Mi) = µi + σ2i /2. (2.2)

Krishnamoorthy and Mathew (2003) suggested the following GPQ for µi and σ2i :

Tµi = x̄i −
X̄i − µi
Si/
√
ni
si/
√
ni = x̄i −

Zi
Ui/
√
ni − 1

si/
√
ni = x̄i −

√
ni − 1

ni
· Zisi
Ui

, (2.3)

and

Tσ2
i

=
s2i
S2
i

σ2i =
s2i

U2
i /(ni − 1)

, (2.4)

where x̄i and s2i are the observed values of X̄i and S2
i .



To obtain a generalized confidence interval for θi, define

Tθi = Tµi +
1

2
Tσ2

i
= x̄i −

√
ni − 1

ni

Zisi
Ui

+
1

2

s2i
U2
i /(ni − 1)

. (2.5)

The distribution of Tθi is free of any unknown parameters. The 100(1−α)% GCI for θi is (Tα,∞),
where Tα is the 100 × αth percentile of Tθi . If θ0 is within the GCI, we don’t reject H0 in (2.1),
otherwise, reject H0. Similarly, a two sided 100(1− α)% GCI for θi is given by (Tα/2, T(1−α/2)).

3 FGPQ-based multiple comparison procedure

The FGPQ introduced by Hannig et al. (2006) is a subclass of Weerahandi’s GPQ. It has a
stronger version of condition in the definition of a GPQ. FGPQ is essentially based on in-
vertible pivotal relationships. To check if a GPQ is also an FGPQ, we only need to check if
T (x,x, θ, δ) = θ. Notice that in Example 1, when Xi = xi and S2

i = s2i , Tµi in (2.3) reduces
to µi and Tσ2

i
in (2.4) reduces to σ2i . As a result, Tθi = µi + 1/2 ∗ σ2i = θi. Hence, Tθi is an

FGPQ. Interested readers may refer to Hannig et al. (2006), in which the authors suggested
three general approaches for constructing FGPQs.
In this section, we propose FGPQ-based MCP for means from k log-normal populations under
heteroscedasticity. The testing problem is as follows

H0 : Mi = Mj for all i 6= j versus Hα : at least one of Mi 6= Mj . (3.1)

Define ratio of the mean as Mij = Mi/Mj and

θij = logMij = log
Mi

Mj
= log

eµi+σ
2
i /2

eµj+σ
2
j /2

=

(
µi +

σ2i
2

)
−

(
µj +

σ2j
2

)
.

The problem of constructing simultaneous confidence intervals for Mij is equivalent to the
problem of constructing simultaneous confidence intervals for θij . The multiple comparison
problem in (3.1) is equivalent to the hypothesis tests

H0 : θij = 0 versus Hα : not all θij = 0. (3.2)

Follow Hannig et al. (2006) and Xiong and Mu (2009), we define the FGPQs for µi and σ2i for
i = 1, · · · , k as follows

Rµi = X̄i −
√
ni − 1

ni
· SiZi
Ui

, Rσ2
i

=
(ni − 1)S2

i

U2
i

, i = 1, · · · , k. (3.3)

Since θi = log(E(Yij)) = µi + σ2i /2, the pivotal variable for θi follows immediately as

Rθi = Rµi +
Rσ2

i

2
= X̄i −

√
ni − 1

ni
· SiZi
Ui

+
(ni − 1)S2

i

2U2
i

.

As a result,

Rθij = Rθi −Rθj = X̄i − X̄j −
√
ni − 1

ni
· SiZi
Ui

+

√
nj − 1

nj
· SjZj
Uj

+
(ni − 1)S2

i

2U2
i

−
(nj − 1)S2

j

2U2
j



Let X̄ = (X̄1, X̄2, · · · , X̄k),S
2 = (S2

1 , S
2
2 , · · · , S2

k).

By inverse chi squared distribution properties, if X ∼ χ2(v), then 1/X ∼ Invχ2(v) and

E(1/X) =
1

v − 2
,Var(1/X) =

2

(v − 2)2(v − 4)
.

In our case,
U2
i ∼ χ2(ni − 1),

1

U2
i

∼ Invχ2(ni − 1)

so that
E

(
1

U2
i

)
=

1

ni − 3
, Var

(
1

U2
i

)
=

2

(ni − 3)2(ni − 5)
(3.4)

Since Zi ∼ N(0, 1), E
(
E

(
Zi
Ui
|Ui
))

= E

(
1

Ui
E(Zi)

)
= 0, The conditional expectation and

variance of Rθij can be derived as follows

ηij = E(Rθij |X̄,S
2)

= X̄i − X̄j + 0 + 0 +
ni − 1

2
S2
i E(1/U2

i )− nj − 1

2
S2
jE(1/U2

i )

= X̄i − X̄j + 0 + 0 +
ni − 1

2(ni − 3)
S2
i −

nj − 1

2(nj − 3)
S2
j

By equation (3.4),

Vij = Var(Rθij |X̄,S
2) =

ni − 1

ni(ni − 3)
S2
i +

(ni − 1)2

2(ni − 3)2(ni − 5)
S4
i

+
nj − 1

nj(nj − 3)
S2
j +

(nj − 1)2

2(nj − 3)2(nj − 5)
S4
j

Now let ξij be the variance of ηij , and let Rξij be the pivotal variable of ξij . By the fact that
Var(S2

i ) = 2σ4i /(ni − 1), we can derive the following:

ξij = Var
{
E(Rθij |X̄,S

2)
}

=
σ2i
ni

+
σ2j
nj

+

(
ni − 1

2(ni − 3)

)2 2σ4i
ni − 1

+

(
nj − 1

2(nj − 3)

)2 2σ4j
nj − 1

=
σ2i
ni

+
(ni − 1)

2(ni − 3)2
σ4i +

σ2j
nj

+
(nj − 1)

2(nj − 3)2
σ4j .

Now replace σ2i by Rσ2
i

in Equation (3.3), we can derive Rξij as follows,

Rξij =
(ni − 1)S2

i

niU2
i

+
(ni − 1)

2(ni − 3)2

(
(ni − 1)S2

i

U2
i

)2

+
(nj − 1)S2

j

njU2
j

+
(nj − 1)

2(nj − 3)2

(
(nj − 1)S2

j

U2
j

)2

.

As pointed out by Xiong and Mu (2009), FGPQs can be used to provide effective approxima-
tions of distributions. The distribution of

maxi<j

∣∣∣∣∣∣θij − E(Rθij |X̄,S2)√
Var(Rθij |X̄,S2)

∣∣∣∣∣∣ (3.5)



can be approximated by the conditional distributions of

Q = maxi≤j

∣∣∣∣∣Rθij − E(Rθij |X̄,S2)√
Rξij

∣∣∣∣∣ . (3.6)

Let q(α) be the conditional upper αth quantile of the distribution of Q. The (1− α)100% simul-
taneous confidence intervals for θij are

ηij ± q(α)
√
Vij for all i < j. (3.7)

The following Theorem shows that the confidence intervals (3.7) have asymptotically correct
coverage probabilities. Proof is similar as Xiong and Mu (2009) and is included in Appendix.

Theorem 3.1. Let Xi1, · · · , Xini , i = 1, · · · , k be random samples from k different populations
and be mutually independent. Assume that 0 < σ2i = V ar(Xi1) < ∞, µi = E(Xi1), N =∑k

i=1 ni and
ni
N
→ λi ∈ (0, 1) as N →∞ for all i, then

P (θij ∈ ηij ± q(α)
√
Vij for all i < j)

p→ 1− α.

We propose Algorithm 2 for finding q(α), the conditional upper αth quantile of the distribution
of Q to construct the simultaneous confidence intervals.
Algorithm 2:
For given observations yij , i = 1, · · · , k, j = 1, · · · , ni, compute xij = lnyij
Compute x̄i and s2i , i = 1, · · · , k
For l = 1, 2, · · · , L
Generate Zi and U2

i , i = 1, · · · , k
Compute Rθij , Rξij , and Ql.
End l loop.
Compute q(α), the (1− α)100% percentile of Ql.

4 Simulations

In this section, we use simulations to study the MCP for k log-normal distributions under the
assumption of heteroscedastic variances and unequal sizes. The simulation settings follow
from Li (2009). Statistical software R is used for all computations.
The sample statistics x̄i and s2i are generated independently as x̄i ∼ N(0, σ2i /ni) and s2i ∼
σ2i χ

2
ni−1/(ni − 1), with 0 < σ2i ≤ 1, i = 1, · · · , k. The simulation study was performed with

factors: (1) number of levels k: k = 3 and k = 6; (2) population variance σ = (σ21, · · · , σ2k):
various combinations; (3) population mean µ = (µ1, · · · , µk): various combinations; (4) Sig-
nificance level α: 0.01, 0.05 and 0.1; (5) group sizes n = (n1, · · · , nk): various combinations.
For a given sample size and parameter configuration, we generated 2000 observed vectors
(x̄1, · · · , x̄k, s21, · · · , s2k) and used 5000 runs to estimate the Type 1 errors (simulated p-value).
According to our experience, 5000 runs is sufficient to guarantee the precision of simulated
p-value. Algorithm 1 is used to find qα, the 1− α percentile of the simulated distribution of Ql.
In Tables 1 and 2, the following notation applies. n = (n1, · · · , nk), k = 3 or 6 is a vector
of unequal group sizes. For k = 3, we have n

(3)
1 = (10, 16, 20),n

(3)
2 = (10, 10, 10),n

(3)
3 =



Table 1: Simulation results of the proposed FGPQ-based multiple comparison procedure for
three groups. Numbers in Table are simulated p-values.

α = .01 α = .05 α = .1

n C
(3)
1 C

(3)
2 C

(3)
3 C

(3)
1 C

(3)
2 C

(3)
3 C

(3)
1 C

(3)
2 C

(3)
3

n
(3)
1 0.0105 0.0150 0.0170 0.0475 0.0410 0.0455 0.0840 0.0825 0.0800

n
(3)
1∗ 0.0125 0.0165 0.0105 0.0575 0.0470 0.0475 0.1020 0.0995 0.0940

n
(3)
2 0.0150 0.0105 0.0140 0.0410 0.0450 0.0385 0.0765 0.0830 0.0830

n
(3)
2∗ 0.0100 0.0110 0.0160 0.0500 0.0410 0.0490 0.1030 0.1115 0.0840

n
(3)
3 0.0100 0.0090 0.0070 0.0400 0.0335 0.0500 0.0890 0.0720 0.0755

n
(3)
3∗ 0.0135 0.0080 0.0100 0.0455 0.0535 0.0510 0.0925 0.1035 0.1015

Table 2: Simulation results of the proposed FGPQ-based multiple comparison procedure for
six groups. Numbers in Table are simulated p-values.

α = .01 α = .05 α = .1

n C
(6)
1 C

(6)
2 C

(6)
3 C

(6)
1 C

(6)
2 C

(6)
3 C

(6)
1 C

(6)
2 C

(6)
3

n
(6)
1 0.0125 0.0140 0.0140 0.0530 0.0590 0.0500 0.0995 0.0925 0.0985

n
(6)
1∗ 0.0105 0.0115 0.0105 0.0460 0.0520 0.0470 0.1005 0.1055 0.1055

n
(6)
2 0.0150 0.0140 0.0115 0.0600 0.0570 0.0580 0.0920 0.0875 0.0895

n
(6)
2∗ 0.0110 0.0115 0.0150 0.0460 0.0510 0.0455 0.0990 0.1050 0.1030

n
(6)
3 0.0140 0.0185 0.0125 0.0570 0.0600 0.0525 0.0920 0.1050 0.0935

n
(6)
3∗ 0.0070 0.0125 0.0125 0.0520 0.0505 0.0580 0.0915 0.084 0.109

(20, 16, 10),n
(3)
1∗ = (50, 80, 100),n

(3)
2∗ = (50, 50, 50), and n

(3)
3∗ = (100, 80, 50). For k = 6, we have

n
(6)
1 = (10, 12, 12, 16, 16, 20),n

(6)
2 = (10, 10, 10, 10, 10, 10),n

(6)
3 = (20, 16, 16, 12, 12, 10),n

(6)
1∗ =

(50, 60, 60, 80, 80, 100),n
(6)
2∗ = (50, 50, 50, 50, 50, 50), and n

(6)
3∗ = (100, 80, 80, 60, 60, 50). Note

that n
(j)
i∗ /n

(j)
i = 5, i = 1, 2, 3, j = 3 or 6. µ = (µ1, · · · , µk), k = 3 or 6 is a vector of

means. For k = 3, we consider µ(3)
1 = (1, 1, 1),µ

(3)
2 = (1, 1, 1.25),µ

(3)
3 = (1, 1.25, 1.45). For

k = 6, we consider µ
(6)
1 = (1, 1, 1, 1, 1, 1),µ

(6)
2 = (1, 1, 1, 1, 1, 0.8), µ

(6)
3 = (1, 1, 1, 1, 1, 0.9).

σ = (σ21, · · · , σ2k), k = 3 or 6 is a vector of variances with σ
(3)
1 = (0.1, 0.1, 0.1),σ

(3)
2 =

(1, 1, 0.5),σ
(3)
3 = (1, 0.5, 0.1), σ(6)

1 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1),σ
(6)
2 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.5),

and σ
(6)
3 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.3). To simplify notation in the tables, let C(3)

1 = (µ
(3)
1 ,σ

(3)
1 ),

C
(3)
2 = (µ

(3)
2 ,σ

(3)
2 ), C(3)

3 = (µ
(3)
3 ,σ

(3)
3 ), C(6)

1 = (µ
(6)
1 ,σ

(6)
1 ), C(6)

2 = (µ
(6)
2 ,σ

(6)
2 ), and C

(6)
3 =

(µ
(6)
3 ,σ

(6)
3 ).

Tables 1 and 2 report the simulation results of the proposed MCP under various settings. We
can see that simulated p-values of MCP are close to the nominal levels when the group sizes
are 10 or more. When group sizes increased by five times, i.e., n(j)

i∗ /n
(j)
i = 5, the simulated

p-value comes slightly closer to the nominal level in general, but no significant difference ob-
served. Notice that n(3)

2 , n
(3)
2∗ , n

(6)
2 , and n

(6)
2∗ are with equal group sizes, and C

(3)
1 and C

(6)
1

are with equal variances. We found that the proposed MCP perform well in terms of coverage
probabilities for both unbalanced unequal variance and balanced equal variance cases.



5 Conclusions

In this article, we proposed an FGPQ-based new method to construct simultaneous confidence
intervals for ratios of means from several log-normal distributions under heteroscedasticity and
unequal group sizes. Simulation studies show that these intervals perform well in terms of
coverage probabilities. We also proved that the constructed confidence intervals have correct
asymptotic coverage. The proposed methods could be applied to group mean comparisons
when data are arising from several log-normal distributions.
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Appendix

Proof of Theorem 1.

Proof. By the central limit theorem, we have
√
N ((η12 − θ12), (η13 − θ13), · · · , (ηk−1,k − θk−1,k))

d→ N(0,U),

where U is an k(k−1)/2×k(k−1)/2 positive definite matrix. Let uab, a, b = 1, 2, · · · , k(k−1)/2

be its (a, b)th entry. It can be shown that

uaa =
σ2i
λi

+
σ4i
2λi

+
σ2j
λj

+
σ4j
2λj

and

NVij →
σ2i
λi

+
σ4i
2λi

+
σ2j
λj

+
σ4j
2λj

almost surely. Therefore,(
η12 − θ12√

V12
,
η13 − θ13√

V13
, · · · ,

ηk−1,k − θk−1,k√
Vk−1,k

)
d→ N(0,U∗),

where the (a, b)th entry of U∗ is uab/
√
uaaubb. Take a random vector (Z1, Z2, · · · , Zk(k−1)/2)

distributed according to N(0,U∗). By the continuous mapping theorem

maxi<j

∣∣∣∣∣θij − ηij√
Vij

∣∣∣∣∣ d→ max|Za| (5.1)

for 1 ≤ a ≤ k(k − 1)/2.
For i = 1, · · · , k, U2

i /ni
p→ 1. For all i 6= j,

√
N(Rθij − ηij) =

√
N

{
−
√
ni − 1

ni
· SiZi
Ui

+

√
nj − 1

nj
· SjZj
Uj

+
(ni − 1)S2

i

2U2
i

−
(nj − 1)S2

j

2U2
j

− ni − 1

2(ni − 3)
S2
i +

nj − 1

2(nj − 3)
S2
j

}
=

σi√
λi
Zj −

σi√
λi
Zi + op(1) (5.2)



conditionally on T = (X̄,S2) almost surely.

Recall that NVij →
σ2i
λi

+
σ4i
2λi

+
σ2j
λj

+
σ4j
2λj

almost surely and note that

NRξij = N
(ni − 1)S2

i

niU2
i

+N
(ni − 1)2

2ni(ni − 3)2

(
(ni − 1)S2

i

U2
i

)2

+ N
(nj − 1)S2

i

njU2
j

+N
(nj − 1)2

2nj(nj − 3)2

(
(nj − 1)S2

j

U2
j

)2

=
σ2i
λi

+
σ4i
2λi

+
σ2j
λj

+
σ4j
λj

+ op(1)

conditionally on T almost surely. It can be shown that Equation (5.2) implies

maxi<j

∣∣∣∣∣θij − ηij√
Rξij

∣∣∣∣∣ d→ max1≤a≤k(k−1)/2|Za| (5.3)

on T almost surely. Let F be the cumulative distribution function of max1≤a≤k(k−1)/2|Za|. By
the continuity of F

supx|Fn(x|T )− F (x)| → 0

almost surely, where Fn is the conditional distribution function of the left side of (5.3). As a
result,

P
(
θij ∈ ηij ± q(α)

√
Vij for all i < j

)
= P

{
Fn

(
maxi<j

∣∣∣∣∣θij − ηij√
Vij

∣∣∣∣∣
∣∣∣∣∣T
)
≤ 1− α

}

= P

{
F

(
maxi<j

∣∣∣∣∣θij − ηij√
Rξij

∣∣∣∣∣
)

+ op(1) ≤ 1− α

}
d→ 1− α
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