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ABSTRACT
In this research, we propose longitudinal generalised variance functions (LGVFs) to produce
convenient estimates of variances by incorporating time effect into modelling. Asymptotic
properties of some certain type of estimators are investigated. Simulation studies and imple-
mentation of the proposed methods to Current Population Survey (CPS) data show that LGVFs
work well in producing standard error estimates.
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1. Introduction

In many large-scale sample surveys such as the CPS or
the Canadian Labour Force Survey (CLFS), thousands
of estimates need to be reported. Calculating stan-
dard error for each published estimator involves a large
amount of work. In addition, standard error estimates
that are not provided by public-use files may also be
needed. In a generalised variance function (GVF), we
first estimate variances for totals of a group of variables
by using balanced repeated replication (BRR), Taylor
Series Linearisation (TSL) or other methods. Interested
readers in variance estimation of a sample survey can
refer to Cohen (1979), Burt and Cohen (1984), Rao
and Wu (1988), Rao (1988), and Wolter (2007). Next,
we postulate a regression model relating the variance
with the estimated totals and derive a fitted regression
line for the purpose of predicting the standard errors of
potential survey statistics. The GVF method saves a lot
of time to produce the government reports.

Johnson and King (1987) studied GVF estimators
using a national survey of reading ability among young
adults and found out that one way tomarkedly improve
upon the GVF model is to use the prior information
about the design effect (deff) of an individual estimator.
Valliant (1987) proved that the GVF model produces
consistent estimates of the variance for a certain class of
superpopulation models. He also mentioned that if the
deffs for the group of estimated totals are similar, the
GVF variances were often more stable than the direct
estimate, as they smooth out some of the variability
from variable to variable.

Many current surveys follow the same households at
regular time intervals. GVF could be applied to analyse

longitudinal data by treating population total as a con-
stant over years. However, as Figure 1 shows, the Cen-
sus population from 1900 to 2010 exhibits a linear or
slight exponential growth trend. Thompson (2015) dis-
cussed approaches to incorporate complex designs in
longitudinal data inference, as well as the complications
introduced by time-in-sample effects. On the other
hand, separate GVFs for each year sounds no longer
a wise choice as we have longitudinal data. Shook-
Sa, Heller, Williams, Couzens, and Berzofsky (2013)
mentioned, separate GVFs are currently needed for
each year in National Crime Victimization Survey
(NCVS), which makes it difficult to manage the anal-
ysis. All these request a new method that can produce
a convenient formula to estimate the standard errors
for longitudinal data. The fitted longitudinal model is
expected to be used to predict standard errors of inter-
ested variables in the future without estimating GVF
parameters.

In this research, we propose longitudinal gener-
alised variance functions (LGVFs) by incorporating
time effect into modelling. In Section 2, we review the
GVF model. In Section 3, we set up a framework, pro-
pose LGVFs and derive asymptotic properties of the
proposed estimators. Section 4 gives simulation studies
and implementation of LGVFs with CPS data. Section 5
gives the conclusion of the research.

2. Generalised variance functionmodel

In this section, we briefly review the GVFmodels.More
detailed description can be found in textbooks from
Wolter (2007) and Lohr (2010).
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Figure 1. U.S. population from 1900 to 2010.

Let T̂ be a survey statistic, for example, the estimated
number of persons employed. Let p̂ be an estimated
proportion of employment, with p̂ = T̂/M, where M
is the population total from the U.S. Census Bureau.
Let d be the design effect of p̂ and m be the sample
size.We have var(p̂) = d × p(1 − p)/m. Define relative
variance (relvar) of p̂ as

relvar(p̂) = var(p̂)
[E(p̂)]2

= a + b
E(T̂)

,

where a = −d/m and b = Md/m. Let υ be the estimate
of relvar of p̂, i.e., υ = v̂ar(p̂)/p̂2. Postulate a regres-
sion model relating a set of υi to T̂i, i = 1, 2, . . . ,m by
υi = a + b/T̂i. Let â and b̂ be the regression estimates
of a and b. TheGVF relative variance is predicted by the
fitted regression function â + b̂/T̂i. A GVF estimate for
var(T̂) is given by the following function:

v̂ar(T̂) = âT̂2 + b̂T̂. (1)

3. Longitudinal generalised variance
functions

GVF has been widely used for a long time by many
large-scale surveys because of the advantages of time
saving and stability of the estimators. For example, it
has been used by the CPS since 1947 (U.S. Census
Bureau, 2006). In this section, we introduce the frame-
work of our research and propose longitudinal gen-
eralised variance functions (LGVFs) by incorporating
time effects. Properties of certain type of estimators are
investigated.

3.1. Framework

Much of the notation in this section follows from Val-
liant (1987). The main difference is that we have added
index t, t = 1, 2, . . . , τ for time periods 1 to τ . In a
stratified two-stage cluster sampling, we define h as the
index for stratum, i as the index for primary sampling
unit (psu), and j as the index for secondary sampling
units (ssu) within the psu. At the psu level, let Nt be
the number of psus in the population at time t, Nth

be the number of psus in stratum h at time t, so that
Nt = ∑H

h=1 Nth. At the ssu level, let Mthi be the num-
ber of ssus in psu i within stratum h at time t, so that
the total number of units in stratum h at time t is
Mth = ∑Nh

i=1Mthi, and the total number of ssus in the
population at time t isMt = ∑H

h=1Mth.
Accordingly, at time t, let nt be the number of psus

in the sample. Let nt = ∑H
h=1 nth, where nth is the num-

ber of psus in the sample within stratum h. Assume that
nt = n for t = 1, 2, . . . , τ . Letmthi be the number of ele-
ments in the sample from ith psu within stratum h. As a
result, mth = ∑nh

i=1mthi, and the total number of units
in a sample over all stratamt = ∑H

h=1mth. At time t, let
Sth be the set of sampled psu in stratum h, Rth be the
set of nonsampled psu in stratum h, and Sthi and Rthi
be the set of sampled and nonsampled units within psu
i in stratum h.

Using a combined inference framework, assume a
random variable ythij is associated with each unit in the
population at time t. The finite population total at time
t is Tt = ∑H

h=1
∑Nht

i=1
∑Mthi

j=1 ythij. A general type of the
estimator Tt can be written as

T̂t =
∑
h

∑
i∈Sth

γthiT̂thi, (2)

where γthi is the coefficient, ȳthi = ∑
j∈Sthi

ythij/mthi and
T̂thi = Mthiȳthi, which estimates Tthi = ∑Mthi

j=1 ythij. For
example, the Horvitz–Thompson estimator when psus
are selected with probabilities proportional to Mthi,
and an equal probability sample is selected within each
sampled psu at time t can be written as follows:

T̂t,HT =
∑
h

∑
i∈Sth

[Mth(nthMthi)
−1T̂thi], (3)

where γthi = Mth(nthMthi)
−1.

The following model assumptions can be applied for
prediction purposes:

E(ythij) = μth

cov(ythij, yth′i′j′) =

⎧⎪⎨⎪⎩
σ 2
thi if h = h′, i = i′, j = j′

ρthiσ
2
thi if h = h′, i = i′, j �= j′

0 otherwise
(4)

Similar formulations can be found from Scott and
Smith (1969), Royall (1976, 1986), and Burdick and
Sielken (1979). We can also apply more complex mod-
els such as the one in Cook and Pocock (1983), time
series models, or stochastic models. The general vari-
ance estimator of var(T̂t) to be studied is based on the
one proposed by Royall (1986):

s2
T̂t

=
∑
h

nth(nth − 1)−1
∑
Sth

γ 2
thir

2
thi, (5)

where rthi = T̂thi − (
∑

Sth
γthjT̂thj/Mth)Mthi, and γthi is

defined in Equation (2).
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Let kthi = [1 + (mthi − 1)ρthi]/mthi. Under the con-
dition that σ 2

thi = σ 2
th = α1thμth + α2thμ

2
th, we can

show that

relvar(T̂t)

≈
∑
h

π2
thα2thM

−2
th

∑
Sth

γ 2
thikthiM

2
thi

+
⎡⎣∑

h

πthα1thM−2
th

∑
Sth

γ 2
thikthiM

2
thi

⎤⎦ /E(T̂t)

= at + bt/E(T̂t), (6)

where πth = E(T̂th)/E(T̂t).

3.2. The time effectmodel

In this section, we propose LGVFs by incorporating
time effects. Let V be the number of variables for GVF
and LGVF calculation. Let τ be the number of time
periods we consider for LGVF. Let θ = (a, b)′ be the
LGVF parameters we want to estimate. The V variables
together with τ time periods provide Vτ observations
for regression parameters a and b estimation. Let time
effect et = Mt/M̄, where M̄ = M1 + M2 + · · · + Mτ .
Let atv = −dtv/m, and btv = M̄dtv/m. By Equation (1),

v̂ar(T̂tv) = −dtv
mt

T̂2 + Mtdtv
m

T̂tv

= −dtv
mt

T̂2 + MtM̄dtv
M̄m

T̂tv

= atvT̂2
tv + etbtvT̂tv.

As in GVF, we define a set of relative variances υtv for
t = 1, 2, . . . , τ and v = 1, 2, . . . ,V . We now have

υtv = atv + btv · et
T̂tv

. (7)

Let υt = (υt1, vt2, . . . ,υtV)′, υ = (υ ′
1, . . . ,υ

′
τ )

′, εt =
(εt1, . . . , εtV)′, and ε = (ε′

1, . . . , ε
′
τ )

′. Now define Xt as
theV × 2 designmatrix for time t with the first column
1s and second column (et/T̂t1, et/T̂t2, . . . , et/T̂tV)

′. Let
X be the design matrix with X = (X′

1, . . . ,X
′
τ )

′. Under
the condition that atv = at = a and btv = bt = b for
t = 1, 2, . . . , τ , v = 1, 2, . . . ,V , time effect model (7)
can be written in the matrix form as follows:

υ = Xθ + ε. (8)

The weighted least square estimators of θ is θ̂ =
(X′WX)−1X′Wυ, where wtv is the weight associated
with variable v at time t, and W is a Vτ × Vτ matrix
with the diagonal element wtv. wtv is usually chosen as
the reciprocal of variance of υtv when they are known.
Otherwise, we can approximate the weight by recipro-
cal of squared υtv.

Consider data pairs (υtv, T̂tv) for t = 1, 2, . . . , τ , v =
1, 2, . . . ,V . We can derive the following estimators for
a and b:

b̂ =
∑τ

t=1
∑V

v=1 υtv[etT̂
−1
tv − T̄−]/wtv∑τ

t=1
∑V

v=1[etT̂
−1
tv − T̄−]2/wtv

= Ŝ1/Ŝ2 (9)

and

â = ῡ − b̂T̄−, (10)

where T̄− = ∑
t,v(e

−1
t T̂tvwtv)

−1/
∑

t,v w
−1
tv , ῡ = ∑

t,v
υtvw−1

tv /
∑

t,v w
−1
tv , Ŝ1 = ∑τ

t=1
∑V

v=1 υtv[etT̂
−1
tv − T̄−]/

wtv, and Ŝ2 = ∑τ
t=1

∑V
v=1[etT̂

−1
tv − T̄−]2/wtv. The

predicted relvariance of T̂tv based on the estimated
LGVF is

υ̂tv = ῡ + b̂[etT̂−1
tv − T̄−]. (11)

Note that model (8) only incorporate et . It doesn’t spec-
ify what kind of time effect that et has. The simplest case
of et could be et = Mt/M̄, where Mt is the population
total from the U.S. Census Bureau without introduc-
ing any modelling. We can also incorporate linear time
effect as illustrated in Figure 1 by the following example.

Example: Linear time effect LGVF.
Figure 1 shows that the U.S. population size

increased dramatically with a linear trend during the
years of 1990–2010. We now fit a simple linear regres-
sionmodel for the population sizeMt growth over time
t as follows:

Mt = β0 + β1t. (12)

By the fact that β̂0 = M̄ − β̂1 t̄, we have

êt = M̂t

M̄
= M̄ + β̂1(t − t̄)

M̄
= 1 + β̂1

M̄
(t − t̄).

Replacing et in (9) and (10) by 1 + β̂1(t − t̄)/M̄, we
have the LGVF estimates for linear time model (12).

3.3. Properties of proposed estimators

In this section, we consider a certain type of estima-
tors such that γthi in Equation (2) is with a structure
of γthi = g1thg2thi. For example, g1th = Mth/nth for T̂HT
in Equation (3). Under assumptions (4), given estima-
tors with the structure of γthi = g1thg2thi, asymptotic
properties of T̂tv, s2T̂tv

, and υ̂v can be derived when
the number of psus in each stratum is large. Lemmas
A.1–A.3 (refer to Appendix) are extensions of work by
Royall (1986). Under certain conditions, Theorem 3.1
shows that ratios of relative variances and predicted
relative variances from proposed LGVFs converge in
probability to 1 (refer to Appendix for proof). The
asymptotic normality then follows immediately.

Theorem 3.1: Under model (4), assumptions (i) to
(xiii), μ4thi = E[T̂thi − E(T̂thi)]4 < ∞, atv = at = a,
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and btv = bt = b for t = 1, 2, . . . , τ , v = 1, 2, . . . ,V , as
Nth, nth → ∞,

relvar(T̂tv − Ttv)

υ̂v

p→ 1.

Proof: Proof is given in Appendix. �

Theorem 3.2: Under model (4), assumptions (i) to
(xiii), μ4thi = E[T̂thi − E(T̂thi)]4 < ∞, atv = at = a,
and btv = bt = b for t = 1, 2, . . . , τ , v = 1, 2, . . . ,V , as
Nth, nth → ∞,

T̂tv − Ttv

T̂tv(υ̂v)1/2
d→ N(0, 1).

Proof: Theproof is a straightforward extension ofwork
by Royall (1986). �

4. Implementation with CPS

In this section, we first use CPS annual social and eco-
nomic supplement (ASEC) data as a population to per-
form simulation studies. Next, we apply the proposed
methods to analyse ASEC data in conjunction with
ASEC public use replicate weight file (ASECREP). The
corresponding ASECREP data are merged with ASEC
by the link variables hseq (household sequence number)
and pppos (trailer portion of unique household ID) for
variance estimation purpose in data application. The
ASECREP data have weights for the variables according
to 160 replications, which are used to calculate vari-
ances. Nineteen binary variables from the ‘Source of
Income’ section are initially considered, such as self-
employment or not, unemployment compensation or
not, and so on. Specifically, they are finc_ws, finc_se,
finc_fr, finc_uc, finc_wc, finc_ss, finc_ssi, finc_paw,
finc_vet, finc_sur, finc_dis, finc_ret, finc_int, finc_div,
finc_rnt, finc_ed, finc_csp, finc_fin, and finc_oi.

A person’s value of a binary variable is 1 if the per-
son had a particular characteristic, and is 0 otherwise.
By examining 2009 ASEC data, the mean of deffs of the
19 variables is 3.754811, and the range of deffs is from
1.593687 to 6.329467. We removed two variables with
the low deffs: finc_ss with deff of 1.593687, and finc_sur
with deff of 1.809737. We also removed three variables
with high deffs: finc_int with deff of 6.329467; finc_div
with deff of 6.073850, andfinc_finwith deff of 5.559943.
The remaining 14 variables are relatively similar regard-
ing deffs with amean of 3.569623, and a narrower range
from 2.059918 to 5.424058. These 14 binary variables
are used to constructGVFs (using 2011ASECdata) and
LGVFs (using 2008 to 2010 ASEC data). In the sim-
ulation study, we removed variable finc_ws due to its
very low relative variance. We restricted our analysis
to the state of New Mexico when we apply ASEC and
ASECREP data.

4.1. Simulation studies

We treat 2008 (2059 observations), 2009 (2188 observa-
tions), and 2010 (2108 observations) ASEC data inNew
Mexico as finite population. Each household was asso-
ciatedwith an ultimate sampling unit (USU) defined for
the CPS. However, the USU information is not released
to public. To mimic the design, we sorted households
from the smallest sequence number to the largest one
within each year and combined four households as a
USU according to order. This results in 205, 208, and
193 USUs, respectively. Simulation is performed with
the following steps:

(a) Within each year, we select n=40 (about 20% sam-
pling rate) and n=100 (about 50% sampling rate)
USUs with probabilities proportional to size (PPS)
and selectmi = 4 individuals within selected USU
i with equal probability.

(b) Calculate estimates for the three samples (2008,
2009 and 2010). Total for variable v at time t is
estimated by the Horvitz–Thompson estimator in
Equation (3), denoted by T̂tv; variance is estimated
by Equation (5), denoted by s2

T̂tv
; relative variance

(relvar) is calculated as υtv = s2
T̂tv
/T̂2

tv.
(c) Apply time adjustment et to estimates from step (b)

using et/T̂tv, where e1 = M1/M̄ = 1, 978, 390/1,
967, 487 = 1.0056 (for year 2009); e2 = M2/M̄ =
1, 977, 807/1, 967, 487 = 1.0052 (for year 2010);
and e3 =M3/M̄= 1, 946, 264/1, 967, 487= 0.9892
(for year 2008).

(d) Apply regression model (7) with fitting methods
LGVF1 (ordinary linear regression) and LGVF2
(weighted least squares with wtv = 1/υ2tv).

(e) Record relvar calculated by using formulas (3)
and (5); record relvar calculated by using fitted
values from LGVF1 and LGVF2 (LGVFs 1–2);
and record standard errors of the fitted relvar by
LGVFs 1–2.

(f) Repeat (a)–(e) for 2000 times. For each variable,
record average values of the relvar calculated by
Equations (3) and (5) (treated as true relvar);
record average values of the relvar estimated by fit-
ted values using LGVFs 1–2 (treated as estimated
value of relvar); record sampling variance of relvar
calculated by Equations (3) and (5) (treated as true
variance of relvar); and record average standard
errors of the fitted relvar by LGVFs 1–2 (estimated
variance of relvar).

Simulation results of both cases: PPS 40 USUs and
PPS 100 USUs are very close to each other, so we will
only report results from the case of PPS 100 USUs. The
case of PPS 100 USUs performs slightly better than the
other case regarding bias and variance. This is very rea-
sonable as Theorems 3.1 and 3.2 require large Nth and
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Figure 2. Logs of estimates of relvar plotted versus logs of
population totals.

nth. Figure 2 is the plot of logs of relvars by Equations (3)
and (5) (solid line, treated as true values) and estimates
from LGVFs 1–2 (dashed line and dotted line) plotted
versus logs of population totals. From the plot, we can
see that LGVF2 works very well in estimating the true
relvars. LGVF1 deviates from the true value quite a bit
when the population total of the variables is large.

To see how precise our LGVF estimators are, we also
plot the ratios of standard error estimates of relvars by
LGVFs 1–2 to the standard error estimate of relvars cal-
culated by sampling variability from simulations (see
Figure 3). Ratios less than 1 indicate that an LGVF is
more precise than the sampling variability by simula-
tions. LGVF2 is doing perfect in estimating the variance
of relvar with none of the ratios greater than 1. While
not surprisingly, LGVF1 has large variance when pop-
ulation total of the variable is large. But LGVF1 is also
doing Okay.

We also investigated the histograms of the binary
variables to see how Theorem 3.2 works. We observe
that asymptotic normality reveals well with high pro-
portion variable such as finc_se (with a total of 211).
While for small total variable such as finc_dis with
a total of only 10, the histogram is highly skewed to
the left as samples with small totals are frequently
selected.

Figure 3. Ratio of the SEs (LGVF1–LGVF2/relvar) versus log
(totals).

4.2. Data analysis: apply LGVF to the full
2008–2010 data

In this section, we apply our methods to the full data
set, which we used as population in simulation stud-
ies. The 14 binary variables used to construct GVFs and
LGVFs are from the ‘Source of Income’ section ofASEC
without the two lowest and three highest deff scores
as we discussed in Section 4. In data analysis, vari-
ance is calculated by using replicate weights and a for-
mula provided by ASECPEP user’s manual (U.S. Cen-
sus Bureau, 2009): var(p̂i) = 4 ∗ ∑160

i=1(p̂i − p̂0)2/160,
where p̂0 is calculated using weights ‘PWWGT0’ for full
data, and p̂i, i = 1, 2, . . . , 160 are calculated by using
the 160 replicate weights ‘PWWGT1’ to ‘PWWGT160’.
This is essentially the empirical variance adjusted by a
factor of 4. The estimated totals T̂tv are calculated by
using full data weights ‘PWWGT0’. We then postulate
a regression function on the relative variances and the
adjusted estimated totals et/T̂tv to derive the estimates
of the regression parameters a and b.

Regression fitting methods, LGVF1: ordinary lin-
ear regression, LGVF2: weighted least squares with
wtv = 1/υ2tv, and LGVF3: data after log transformation
on both y and x are applied. Figure 4 is the plot of
logs of estimates of relative variances and the estimates
from the LGVFs 1–3 plotted versus logs of population
totals. From the plot, we can see that LGVF2 (dot-
ted line) seems to mimic the relative variances most
closely. LGVF1 (dashed line) and LGVF3 (dash-dotted
line) also work fine, with the tail a little off from the
black line.

We also plot the ratios of standard error estimates of
relative variances by LGVFs 1–3 to the standard error
estimate of relative variance by using replicate weights
to see how precise the proposed LGVF estimators are.
Ratios less than 1 indicate that an LGVF is more precise
than υ. LGVF1 and LGVF2 are both precise with none
of the ratios greater than 1. The variance of relvar from
some variables estimated by using LGVF3 is less precise
than the variance estimated using replicate weights, but
LGVF3 is also doing well (Figure 5).

Figure 4. Logs of estimates of relvar plotted versus logs of
population totals.
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Figure 5. Ratio of the SEs (LGVF1–LGVF3/relvar) versus
log(totals).

Figure 6. Logs of predicted relvar by using LGVF1–3 plotted
versus logs of population totals (11 March).

Next, we use LGVF models to predict the relative
variances of the year 2011 data. These relative variances
can be calculated by the replicate weights as we have
done before, which are treated as direct calculated rel-
var. Figure 6 shows the prediction are quite good, with
LGVF2 performing the best.

4.3. Comparison of GVFwith LGVF

In this section, we do a brief comparison study of the
performance of GVF and LGVF. The GVF models are
constructed by the year 2011 data, while the LGVF
models are built by using three years (2008–2010) of
data with time adjustment. The same regression fitting
methods: ordinary least squares (Method 1), weighted
least squares (Method 2), and log transformations
(Method 3) are applied toGVFmodelling. Accordingly,
they are called GVF1, GVF2, and GVF3. Fourteen vari-
ables are used to construct GVFs and LGVFs, and the
remaining five variables are used for predicting. Mean-
squared prediction errors are calculated as the average
of the sum of the squares of the difference between
predicted values and observed values.

Table 1 shows that LGVFs have smaller mean-
squared prediction errors. When predicting the five
remaining variables, GVFs and LGVFs do not make
much difference. However, the case of predicting 19

Table 1. Comparison of GVF and LGVF.

GVF LGVF

Predicting 5 left out variables Method 1 0.02183022 0.01636561
(2011) Method 2 0.02110222 0.01724829

Method 3 0.01754491 0.01619439
Predicting 19 variables Method 1 0.01781202 0.00898679
(2011, 14 grouping, 5 left out
for GVF)

Method 2 0.01811376 0.00310806

(19 left out for LGVF) Method 3 0.02436289 0.01057787

Notes: Numbers in the table are the square root of mean-squared predicted
errors. Method 1 is ordinary least-squares fitting, Method 2 is weighted
least-squares fitting, and Method 3 is log transformation on both y and x
fitting.

variables in 2011 is standing out with SE of 0.003108
by LGVF2 compared to SE of 0.01781 by GVF1. It is
quite exciting since this is the most common case we
want to apply the LGVF methods. That is, we want to
use a few years of data to build the LGVF model to
make a prediction for future years. Since design effects
do not change much over years, therefore, combining
the variables from 2009 with the same variables from
2008 and 2010 should result in reasonable results. We
also incorporated et to adjust for time effect for a longi-
tudinal issue. The LGVFmethods, particularly LGVF2,
perform very well regarding mean-squared prediction
errors.

5. Conclusions

In this research, we extended the Generalised Variance
Functions (GVFs) to Longitudinal Generalised Vari-
ance Functions (LGVFs), which reduce to GVFs when
data are cross-sectional. We incorporated time effect
intomodelling to adjust the dynamic time changes over
the years. We show that ratios of relative variances and
predicted relative variances from the proposed LGVFs
converge in probability to 1 under certain conditions.
Based on simulation studies, we would suggest using
LGVF2 (the weighted least square regression fitting)
to predict relative variances of the variables as it has
smaller bias and variance compared to the other two
methods. Data application to ASEC supplements using
replicate weights provided by ASECPEP reveals simi-
lar findings. A comparison study between LGVF and
GVF also show that LGVF is efficient in reducing the
mean squared prediction errors. Future research may
consider adopting mixed models and nonparametric
smoothing methods for regression model fitting. In
both mixed model and nonparametric application, we
can add the prior design effect information intomodels.
This may markedly improve our model as suggested by
Johnson and King (1987).
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Appendix

For each time period t, t = 1, 2, . . . , τ , the following condi-
tions apply as nth,Nth → ∞ for h = 1, 2, . . . ,H.

(i) nth/Nth → 0,mthi/γthi → 0 for i = 1, 2, . . . ,Nth
(ii) nth/nt → c1th
(iii) Nth/Nt → c2th
(iv) ng21thnth/N

2
t → c3th

(v) n−1
th

∑
i∈Sth

g22thiD1thi → V1th

(vi) n−1
th

∑
i∈Sth

D2thi → V2th

(vii) (Nth − nth)−1 ∑
i∈Rth

D3thi → V3th

(viii) n−1
th

∑
i∈Sth

g2thiD4thi → V4th

(ix) n−1
th

∑
i∈Sth

g22thiM
2l
thi → c(l)4th, l = 0, 1

(x) n−1
th

∑
i∈Sth

(mthi/Mthi)
2D1thi → V5th

where

D1thi = M2
thiσ

2
thi[1 + (mthi − 1)ρthi]/mthi

D2thi = (Mthi − mthi)σ
2
thi[1 + (Mthi − mthi − 1)ρthi]

D3thi = Mthiσ
2
thi[1 + (Mthi − 1)ρthi]

D4thi = Mthiσ
2
thi(Mthi − mthi)ρthi

and c1th through c3th, c
(l)
4th, V1th through V5th are constants.

By conditions (i)–(iii), we have nt/Nt → 0. g1th and g2thi
have more specific forms related to the estimators. The above
assumptions apply to each time period t. For all the time
periods, the following conditions apply

(xi) wtv/dtv → ωv
(xii) Mt/Nt → M̄/N̄
(xiii) E(T̂tv)/N̄ → etψv → Nt/N̄ψv

where T̂tv is the estimator of total for variable v at time t, ωv
and ψv are constants.

Lemmas A.1–A.3 are extensions of work by Royall
(1986).

Lemma A.1: Under model (4) and conditions (i) to (viii) in
Appendix,

var(T̂t − Tt) ≈
∑
h

∑
Sth

γ 2
thiD1thi,

where γthi is defined in Equation (2), D1thi is defined in
Appendix, and the symbol ≈ means ‘asymptotically equivalent
to’.

Lemma A.2: Under model (4) and conditions (i) to (ix),
u4thi = E[(T̂thi − E(T̂thi)]4 < ∞, γthi/Mth = o(nth), and s2

T̂t
as defined in Equation (5), we have

var(T̂t − Tt)/s2T̂t
p→ 1.
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Lemma A.3: Under model (4) and conditions (i) to (viii)
and (x), u4thi < ∞ and the random variables ȳthi(h =
1, . . . ,H, i = 1, . . . , nth) are mutually independent at each
time period t, then

T̂t − Tt

sT̂t

d→ N(0, 1).

Proof of Theorem 3.1: Proof followsValliant (1987).We first
prove that relvar(T̂tv − Ttv) has the same limit as υv for any
time period t. Next, we prove that the estimated υ̂v converges
to the same limit.

By Equation (6), adding the subscript v and time t, we
have

relvar(T̂tv − Ttv) ≈ atv + btv/E(T̂tv),
where

atv =
∑
h

(πthv/Mth)
2α2thv

∑
Shi

γ 2
thikthivM

2
thi,

and
btv =

∑
h

(πthvα1thv/Mth)
∑
shi

γ 2
thikthivM

2
thi.

By the definition of πthv, kthiv,D1thiv, γthi and the assumption
that σ 2

thiv = σ 2
thv, together with conditions (iv), (v), (xii), and

(xiii),

ntatv =
∑
h

(ntg21thnth/N
2
t )α2thvμ

2
thvN

2
t E(T̂tv)

−2σ−2
thv

×
⎛⎝∑

Sh

g22thiD1thiv/nth

⎞⎠
→

∑
h

c3thα2thvμ2
thvψ

−2
v V1thvσ

−2
thv = Atv.

Similarly,(
nt
Nt

)
btv →

∑
h

c3thα1thvμthvψ
−1
v σ−2

thv V1thv = Btv.

Let atv = at = a for all t and v. Atv = A for some constant
A. btv = bt = b for all t and v, so Btv = Bt = B for some
constant B. Therefore,

ntrelvar(T̂tv − Ttv) → A + B
ψv

.

Next we’ll show that ntυtv has the same limit. Lemma A.3
shows

T̂tv − E(T̂tv)

N̄
p→ 0.

Therefore,
T̂tv

N̄
p→ etψv.

Together with Lemmas A.1 and A.2, we have

ntυtv → e−2
t ψ−2

v
nt
N2
t
e2t

∑
h

nthg21thV1thv

→ ψ−2
v

∑
h

c3thV1thv.

Now multiplying and dividing within the summation by
σ 2
thv = α1thvμthv + α2thvμ

2
thv gives

ntυtv
p→ ψ−2

v

∑
h

σ 2
thv

∑
h

c3thV1thv∑
h σ

2
thv

p→
∑
h

c3thV1thvα2thμ
2
thv

σ 2
thvψ

2
v

+
∑
h

c3thV1thvα1thμthv

σ 2
thvψ

2
v

p→ A + B
ψv

. (A1)

Next, we want to show that ntυ̂tv
p→ A + B/ψv to complete

the proof. Recall that nt = n for all time period t. Consider
Ŝ1 and Ŝ2 in Equation (9), by condition (xi), (xii), (xiii), and
the result from (A1), we have

nN̄dtvŜ1
p→ B

[∑
t

∑
v
ψ−2
v ω−2

v −
∑
t

∑
v
ψ−1
v ω−1

v ψ̄−

]
(A2)

and

N̄2dtvŜ2
p→

∑
t

∑
v
ψ−2
v ω−2

v −
∑
t

∑
v
ω−1
v (ψ̄−)2, (A3)

where

ψ̄− =
∑
t

∑
v
(ψ−1

v ω−1
v )/

∑
t

∑
v
ω−1
v .

By (A2) and (A3), we have

b̂ = Ŝ1
Ŝ2

p→ B
n/N̄

or
n
N̄
b̂

p→ B.

The convergence of ntυtv (A1) implies that nῡv
p→ A +

B(ψ̄−). As a result,

nυ̂v = nῡv +
(
n
N̄

)
b̂(etN̄T̂−1

tv − N̄T̄−)

p→ A + B
ψv

.

Therefore, for all time periods t = 1, 2, . . . , τ

relvar(T̂tv − Ttv)

υ̂v

p→ 1. �
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