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Abstract

In this research, we extend Neyman smooth-type goodness of fit tests to

complex surveys by incorporating consistent estimators under certain survey

design, which is accomplished by data-driven nonparametric order selection

methods. Asymptotic properties of the proposed estimators are investigated.

Simulation results show that the proposed methods improve statistical power

while control type I error very well, especially for the cases with slow-varying

probabilities. The proposed methods are applied to solve some problems arising

from the National Youth Tobacco Survey (NYTS) data.
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1 Introduction

Analyses of categorical data arising from complex surveys is frequently encountered in

quantitative sociological and economic research. A number of chi-squared tests were

proposed to assess the fit of models for such data, which include but not limited to

Wald (1943), Fay (1979, 1985), Rao and Scott (1981, 1984), Bedrick (1983), Rao and

Scott (1987), Thomas, Singh, and Roberts (1996) and kwang Kim, Rao, and Wang

(2019).

The Neyman smooth-type tests (Neyman, 1937) have been studied for indepen-

dent and identically distributed (iid) data. Lancaster (1969) discussed the decom-

position of the Pearson’s chi-squared test statistic. Rayner, Best, and Dodds (1985)

examined the similarities and differences between Pearson’s chi-squared test and the

Neyman smooth test. Rayner and Best (1986) extended Neyman smooth-type tests to

location-scale families. A comprehensive overview of the Neyman smooth-type good-

ness of fit (GOF) tests can be found in Rayner and Best (1989, 1990) and Rayner,

Thas, and Best (2009).

The chi-squared test statistics can be decomposed into ordered components with

most information contained in the first few ones, so that component deduction is

possible. Eubank (1997) introduced Neyman smooth-type GOF tests incorporated
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with order selection for iid data. A review of order selection can be found from

Eubank (1999).

In this research, we extend Eubank’s work from iid case to complex surveys.

We incorporate design consistent estimators into test statistic, and use data-driven

methods to select the optimal orders. This paper is organized as follows. In Section

2, we review a Neyman GOF test and first and second order corrected tests. In

Section 3, we propose the Neyman smooth type GOF tests in complex surveys. In

section 4, we investigate asymptotic properties of the proposed estimators. In Section

5, simulation studies are used to evaluate the proposed methods and to compare the

proposed tests with several tests in literature. Section 6 gives an application example.

Finally, we give conclusions and future research work in Section 7.

2 Background

Let y = (y1, y2 · · · yK)′ follow a multinomial distribution with
∑K

i=1 yi = n. Suppose

that the underlying probability vector is p = (p(1), p(2) · · · p(K − 1))′ with pK =

1−
∑K−1

k=1 pk, and let p0 = (p0(1), p0(2) · · · p0(K − 1))′ be a known vector. A general

hypothesis of interest is:

H0 : p = p0 versus Hα : p 6= p0. (1)

The Pearson’s test statistic X2 =
∑K

i=1 (yi − ei)2/ei = n
∑K

i=1 (p̃i − p0i)2/p0i is used

to measure the distance between the observed counts and expected counts ei’s under

3



H0, where p̃i = xi/n is the proportion of sample units in category i. With a complex

survey data, one natural extension of X2 is to replace p̃i with the design consistent

estimator p̂i (defined as the sum of weights of units in cell i divided by the sum

of weights of all units in the sample), where weights are associated with a specified

survey design. A weighted-up X2 is defined as follows:

X2 = n
K∑
i=1

(p̂i − p0i)2

p0i
. (2)

2.1 Neyman smooth-type tests in for iid case

In this section, we review Neyman smooth-type tests for iid case by Eubank (1997).

Our interest is to test if p = p0 as in Equation (1). Define basis function xi =

(xi(1), xi(2), · · · , xi(K))′, i = 1, 2, · · · , K − 1, which satisfies the following orthogo-

nality conditions:

x′jxi =


1 if j = i,

0 if j 6= i,

i, j = 1, · · · , K − 1, (3)

and

K∑
k=1

xj(k)
√
p0(k) = 0, j = 1, · · · , K − 1. (4)

Let f̃(k) = (p̃(k)− p0(k))/
√
p0(k), for k = 1, · · · , K, with associated (discrete) gen-

eralized Fourier coefficients b̃j =
∑K

k=1 f̃(k)xj(k), for j = 1, · · · , K − 1. It can be

shown that f̃(k) is an unbiased estimator of f(k) = (p(k)− p0(k))/
√
p0(k), for k =

1, · · · , K, with associated Fourier coefficients βj =
∑K

k=1 f(k)xj(k), for j = 1, · · · , K−
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1. By Parseval’s relation (Arfken, 1985, pg. 425), Pearson’s chi-squared test statistic

can be re-organized as

X2 = n
K∑
k=1

(p̃(k)− p0(k))2

p0(k)
= n

K∑
k=1

(f̃(k))2 =
K−1∑
j=1

nb̃2j . (5)

It can be shown that hypothesis (1) is equivalent to

H∗0 : β1 = · · · = βK−1 = 0, (6)

and its corresponding alternative becomes

H∗1 : βq 6= 0 and βq+1 = · · · = βK−1 = 0, for q = 1, · · · , K − 1. (7)

Under null hypothesis H∗0 , test statistic of order q: X2
q =

∑q
j=1 nb̃

2
j for q = 1, · · · , K−

1 is a χ2
q distribution.

The remaining problem is to find an optimal estimate of the order q. Let q̃ be the

maximizer of M̃(q), where

M̃(q) =
n+ 1

n− 1

q∑
j=1

b2j −
2

n− 1

q∑
j=1

ṽjj, for q = 1, · · · , K − 1, (8)

and ṽjj =
∑K

k=1 xj(k)2p̃(k)/p0(k) for j = 1, · · · , K − 1. Eubank (1997) suggested a

test statistic of W = (X2
q̃ − q̃)/

√
2q̃ for q̃ 6= 0. Under H∗0 , the distribution of W is

obtained through simulations. The test statistic W is compared to 1− α quantile of

the distribution of W under H∗0 for testing purposes.

Another estimator suggested by Eubank (1997) is denoted by q̃α, which is the

maximizer of

M̃α(q) =
n+ 1

n− 1

q∑
j=1

b2j −
aα

n− 1

q∑
j=1

ṽjj, for q = 1, · · · , K − 1, (9)
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where M̃α(0) = 0, α is a specified significance level, and aα is the solution of 1− α =

exp {−
∑∞

k=1 P (χ2
k > kaα)/k}. The null hypothesis will be rejected if q̃α > 0.

2.2 Corrections to Chi-Squared Test Statistic

Under complex designs, observations are correlated due to clustering. Therefore,

independence assumption is violated. Under null hypothesis (1), the weighted-up X2

in Equation (2) is distributed asymptotically as a linear sum of δ1W
2
1 +· · ·+δK−1W 2

k−1

instead of a χ2(K−1) distribution, where Wi’s are iid χ2(1) distribution. The weights

δi’s are eigenvalues of the design effect matrix P−1V under H0, where P = D(p)−pp′,

D(p) is a (K − 1)× (K − 1) matrix with kth diagonal element p(k) and off-diagonal

entries 0, and V/n is the covariance matrix of p̂ = (p̂1, p̂2, · · · , p̂K−1)′.

Under null hypothesis (1), let δ. be the expected value of δ1W
2
1 + · · ·+ δK−1W

2
K−1

such that δ. =
∑K−1

i=1 δi/(K − 1). An approximate first-order corrected test can thus

be obtained by comparing the observed value of X2/δ̂. to χ2
K−1(α).

When the full estimated covariance matrix V̂ is known, a better approximation

to the asymptotic distribution of X2 is to match the mean and variance of the test

statistic to the mean and variance of a χ2 distribution. The Rao-Scott (1981) second-

order corrected test statistic is X2
S = X2/[δ̂.(1 + â2)], where

â2 =
K−1∑
i=1

δ̂2i /[(K − 1)δ̂.
2
]− 1, (10)

This statistic is approximately a chi-squared random variable on v = (K−1)/(1+ â2)

degrees of freedom. If the design effects of the categories are all similar, the first
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and second-order corrected tests will behave similarly. Otherwise, the second order

corrected test may perform better.

3 Neyman Smooth-Type GOF Tests in Complex

Surveys

In this Section, we extend Neyman smooth-type GOF test (Eubank, 1997) to complex

surveys. First, we introduce the notation and set up the research problem. Next we

propose two Neyman smooth-type GOF tests incorporated with order selection for

use in complex surveys.

3.1 Notation and Research Problem

In section 2, we have defined p0, p, and p̂ as the vector of hypothesized, underlying,

and estimated proportions of a categorical data set. The hypothesis of interest stated

in Equation (1) is H0 : p = p0, versus H1 : p 6= p0.

For j = 1, · · · , n and k = 1, · · · , K, define

yj(k) =


1 if outcome j is from category k,

0 otherwise,

and let wj be the sampling weight associated with yj(k) based on a specified survey

design. The estimated proportion of the kth category can be expressed as

p̂(k) =

∑n
j=1wjyj(k)∑n

j=1wj
, k = 1, · · · , K.
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Let f̂(k) = (p̂(k)− p0(k))/
√
p0(k), with associated generalized Fourier coefficients

bj =
∑K

k=1 f̂(k)xj(k), j = 1, · · · , K − 1. By the fact that E[p̂(k)] = p(k), we can

show that f̂(k) is an unbiased estimator of f(k) with associated Fourier coefficients

βj =
∑K

k=1 f(k)xj(k), j = 1, · · · , K − 1.

Now define basis functions xj(k), j = 1, 2, · · · , K − 1 as in Section 2 that satisfy

the orthogonality conditions (3) and (4). Define xK = (
√
p01,
√
p02, · · · ,

√
p0K)′, and

let X = (x1,x2, · · · ,xK), and X[K] = (x1,x2, · · · ,xK−1). Orthogonality condition

(4) can also be written as x′jxK = 0, j = 1, · · · , K − 1. To construct the basis func-

tions, we can use the Gram-Schmidt process to orthonormalize the polynomials of

degree K − 1 under the inner product < w, v >=
∑K

k=1w(k)v(k)
√
p0(k). For exam-

ple, if K = 3 and p0 = (0.5, 0.3, 0.2)′, we can chose the two basis functions as x1 =

(−0.6031023, 0.1369881, 0.7858129) and x2 = (0.3691445,−0.8253692, 0.4271979), which

satisfy the orthogonality conditions (3) and (4). As another example, for the simple

uniform hypothesis H0 : p = p0 = 1/K, the following basis function can be applied:

xj(k) =

√
2

K
cos

(
jπ(k − 0.5)

K

)
, k = 1, · · · , K and j = 1, · · · , K − 1. (11)

Let F̂ = (f̂(1), f̂(2), · · · , f̂(K))′,F = (f(1), f(2), · · · , f(K))′,b = (b(1), b(2), · · · , b(K−

1))′ and β = (β(1), β(2), · · · , β(K − 1))′. We can show that b = X′[K]F̂, F′xK = 0,
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and β = X′[K]F. The weighted up X2 defined in Equation (2) can be written as

X2 = n

K∑
k=1

(p̂(k)− p0(k))2

p0(k)

= nF̂′F̂ = nF̂′XX′F̂

= nb′b = n

K∑
j=1

nb2j = n

K−1∑
j=1

b2j ,

where the last equality comes from the fact that bK = F̂′xK = 0. Notice that, f(k) is

0 under the null hypothesis p = p0. By Lehmann (1986, pg. 495), the hypothesis (1)

is equivalent to H∗0 : β1 = · · · = βK−1 = 0, and its corresponding alternative becomes

H∗1 : βq 6= 0 and βq+1 = · · · = βK−1 = 0, for q = 1, · · · , K − 1. That is to say that we

want to find an optimal estimate of q, so that the first q components contain most of

the information. Let bq = (b(1), b(2), · · · , b(q))′,βq = (β(1), β(2), · · · , β(q))′, and let

Xq = (x1,x2 · · · ,xq). A Neyman smooth-type GOF test statistic is
∑q

j=1 nb
2
j , q =

1, · · · , K − 1. If the underlying order is q0, an optimal estimator of q0 can be the

minimizer of

K∑
k=1

(fq(k)− f(k))2 where fq =

q∑
j=1

bjxj. (12)

= (XqX
′
qF̂− F)′(XqX

′
qF̂− F)

= b′qbq − 2b′qβq + β′β.

In this research, we propose statistical tests for hypothesis H∗0 versus alternative H∗1

based on criterion (12), and examine properties of the estimators.
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3.2 Proposed Test W

In this section, we first investigate the estimator of q0 in a simple random sam-

ple (SRS). Next, we propose a general form of the estimator for complex surveys.

Since β′β doesn’t depend on q, minimizing Equation (12) is equivalent to maxi-

mizing M(q) = −b′qbq + 2b′qβq. Now we want to find an estimator of M(q) such

that E(M̂(q)) = E(M(q)). In an SRS, Equation (24) (refer to Appendix) shows

that V (bj) =
(∑K

k=1 x
2
j(k)p(k)/p0(k)− β2

j

)
/ñ, where ñ = n/(1− n/N). We propose

maximizing the following M̂ñ(q) for an SRS case,

M̂ñ(q) =
ñ+ 1

ñ− 1

q∑
j=1

b2j −
2

ñ− 1

q∑
j=1

v̂jj, q = 1, · · · , K − 1,

where M̂ñ(0) = 0, and v̂jj =
∑K

k=1 xj(k)2p̂(k)/p0(k), for j = 1, · · · , K − 1. It can be

shown that E(M̂ñ(q)) = E(M(q)).

Note that in an SRS, V/n ≈ (1 − n/N)P/n. Under H0, P−10 V = P−10 (1 −

n/N)P0 = (1 − n/N). Therefore, δ., the average of eigenvalues of (P0)
−1V0 under

an SRS is 1 − n/N , and ñ = n/δ.. In a complex survey, we can estimate δ. under

a specified survey design, and approximate V̂ (p̂) = δ̂.V̂SRS(p̂). Define an effective

sample size n̂ = n/δ̂.. The maximizing criterion in a general complex survey is:

M̂(q) =
n̂+ 1

n̂− 1

q∑
j=1

b2j −
2

n̂− 1

q∑
j=1

v̂jj, q = 1, · · · , K − 1. (13)

Let q̂ be the estimate of q0 by maximizing criterion (13). q̂ may be a natural test

statistic and the null hypothesis can be rejected if q̂ > 0 is obtained through data.

However, as shown in Spitzer (1956) and Zhang (1992), the limiting probability of
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the Type I error limK→∞ limn→∞ P (q̂ > 0|q0 = 0) is 0.29. Follow Eubank (1997), we

propose a test statistic W as follows:

W =


X2
q̂ − q̂√

2q̂
q̂ > 0

0 q̂ = 0,

(14)

where X2
q̂ =

∑q̂
j=1 n̂b

2
j for q = 1, · · · , K − 1 and X2

q̂ = 0 for q̂ = 0.

The distribution of W under null hypothesis (6), denoted by W0 is obtained

through simulations. For an arbitrary pre-specified level of significance α, the test

can be performed by comparing the value of W with the 1− α quantile of W0.

3.3 Proposed Test q̂α

In this section, we propose a test statistic q̂α that can be used directly to test the

hypothesis H∗0 . The criterion in Equation (9) is modified by replacing sample size n

with the effective size n̂.

M̂α(q) =
n̂+ 1

n̂− 1

q∑
j=1

b2j −
aα

n̂− 1

q∑
j=1

v̂jj, q = 1, · · · , K − 1 (15)

where M̂α(0) = 0, v̂jj =
∑K

k=1 xj(k)2p̂(k)/p0(k) for j = 1, · · · , K − 1, and aα will

be discussed in next paragraph. The proposed test statistic q̂α is the maximizer of

Equation (15).

Recall that the limiting probability of the Type I error for the proposed estimator

q̂ in section 3.2 is 0.29. To solve this problem, the proposed test q̂α replaced the

constant 2 in equation (13) with aα in equation (15) to control the Type I error at
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a specified level α. According to Eubank and Hart (1992) and Eubank (1997), aα is

the solution of the equation

1− α = exp

{
−
∞∑
k=1

P (χ2
k > kaα)

k

}
(16)

or the solution of the following equation

P

(
max

1≤k≤K−1

[
1

k

k∑
j=1

Z2
j

]
≥ aα

)
= α, (17)

where χ2
k is the central chi-squared random variable with k degrees of freedom and

Zj’s are independent standard normal random variables. Notice that a large K ap-

proximation is needed for equation (16). From simulation studies, aα converges to

the desired value quickly when K > 10. A level α test is conducted by rejecting H∗0

if q̂α > 0 is obtained.

4 Properties of the Proposed Estimators

In Section 3, we proposed two Neyman smooth-type GOF tests incorporated with

order selection for use in complex surveys. In this section, we first derive distribution

of the Fourier coefficients bj. Next, we examine asymptotic properties of the proposed

estimators. Proofs are given in Appendix.

4.1 Limiting Distribution of The Fourier Coefficients bj’s

Theorem 1. Assume that there is a sequence of superpopulations U1 ⊂ U2 ⊂ · · · ⊂

Ut ⊂ · · · as defined in Isaki and Fuller (1982). Let πit = p(psu i is in the sample from Ut)
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and πijt = p(psu i and psu j are both in the sample from population Ut) be the inclu-

sion and joint inclusion probabilities for the samples from population Ut. Assume

there are constants c1 and c2 such that 0 < c2 < πit < c1 < 1 for all i and any

superpopulation in the sequence. Also assume there exists an αt with αt = o(1) such

that πitπjt−πijt ≤ αtπitπjt. The Fourier coefficient b is approximately (k−1)-variate

normal with mean vector 0 and covariance matrix V/n̂ for sufficiently large n̂, where

n̂ is the effective sample size.

4.2 Asymptotic Properties of q̂

In this section, we state the asymptotic properties of q̂, which is the maximizer of

criterion (13) and is used to construct the proposed test W in Section 3.2.

Theorem 2. Following Eubank (1999, pg. 51), let

cr =
∗∑
r

{
r∏

k=1

1

Nk!

(
P (χ2

k > 2k)

k

)Nk
}
,

and

dr =
∗∑
r

{
r∏

k=1

1

Nk!

(
P (χ2

k < 2k)

k

)Nk
}
,

where c0 = d0 = 1, χ2
k denotes a central chi-squared random variable with k degrees of

freedom, and
∑∗

r denotes the sum extending over all r-tuples of integers (N1, · · · , Nr),

such that N1 + 2N2 + · · ·+ rNr = r. Under the null hypothesis (6),

lim
n̂→∞

P (q̂ = q) = cqdK−1−q, for q = 0, · · · , K − 1.
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In addition, under alternative hypothesis (7),

lim
n̂→∞

P (q̂ < q0) = 0, and lim
n̂→∞

P (q̂ = q0 + r) = P (r∗ = r), r = 0, · · · , K − q0 − 1,

where r∗ is the maximizer of the criterion,

R(r) =
r∑
j=1

v(j+q0)(j+q0)(Z
2
j − 2), for r = 1, · · · , K − q0 − 1, (18)

with R(0) = 0, and (Z1, · · · , ZK−q0−1)′ a vector of normal random variables with mean

0 and covariance cov(Zi, Zj) = v(i+q0)(j+q0)/
√
v(i+q0)(i+q0)v(j+q0)(j+q0).

There are several useful conclusions from Theorem 2. First, the limiting prob-

ability that q̂ is underselected goes to 0, under both null (6) and alternative (7)

hypotheses. Second, the limiting probability that q̂ is overselected is not negligible

under both null and alternative hypotheses. If the maximizing criterion with a = 2

is taken in Theorem 2, it is known that the limiting probability of the Type I error is

0.29 as K → ∞ and n̂ → ∞. As a result of Theorem 2, the following corollary can

be derived.

Corollary 1. Under both null (6) and alternative (7) hypotheses,

X2
q̂ −X2

q0

d−→ Wr∗ , where Wr =
r∑
j=1

v(j+q0)(j+q0)Z
2
j ,

and r∗ is the maximizer of the criterion (18), in which the vector of normal random

variables (Z1, · · · , ZK−q0−1)′ is the same as defined in Theorem 2. In addition, for

any fixed finite constant C, limn̂→∞ P
(
X2
q̂ ≥ C|q0 6= 0

)
= 1.
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Recall criterion (13), M̂(q) =
n̂+ 1

n̂− 1

q∑
j=1

b2j−
2

n̂− 1

q∑
j=1

v̂jj. The limiting probability

of the Type I error is about 0.29 for this case. Now let’s consider another maximizing

criterion

M̂2(q) =
n̂+ 1

n̂− 1

q∑
j=1

b2j −
an̂

n̂− 1

q∑
j=1

v̂jj,

where an̂ is allowed to grow with the effective sample size n̂ at an appropriate rate.

In next theorem, we prove that the estimator q̂an̂ (maximizer of M̂2(q)) is consistent

with q0 if an̂ is large enough.

Theorem 3. If an̂ = o(
√
n̂) and an̂ > 2ln(ln(n̂)), we have

q̂an̂
P−→ q0, for q0 ≥ 0.

Theorem 3 says that the limiting probability of Type I error goes to 0, when the

effective sample size n̂ is large enough and the penalty term an̂ grows with sample

size n̂ at an appropriate rate.

4.3 Asymptotic Properties of q̂α

In this section, we examine properties of the direct test statistic q̂α (the maximizer of

criterion (15) in section 3.3). For a pre-specified level of significance α, it is reasonable

that there exists a value aα such that P (q̂α 6= 0|q0 = 0)→ α, as K →∞ and n̂→∞,

where the estimator q̂α is determined by aα. Theorem 4 gives the asymptotic behaviors

of q̂α.
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Theorem 4. Let q̂α be maximizer of the criterion (15), M̂α(q) =
n̂+ 1

n̂− 1

q∑
j=1

b2j −

aα
n̂− 1

q∑
j=1

v̂jj, for q = 1, · · · , K−1, where M̂α(0) = 0, v̂jj =
∑K

k=1 x
2
j(k)p̂(k)/p0(k), for j =

1, · · · , K − 1, and aα is the solution of Equation (16) or (17). As n̂→∞, we have

P (q̂α > 0|q0 = 0)→ α and P (q̂α > 0|q0 6= 0)→ 1.

5 Simulation Studies

In this section, we proceed with simulation studies to evaluate the proposed methods.

For all the settings considered, the proposed tests control Type I error at the pre-

specified level very well; and the proposed tests also have higher or similar empirical

statistical power compared to some existing methods.

5.1 Simulation Set Up

Consider a data with K = 10 categories from a complex design, the hypothesis of

interest in the simulation studies is:

H0 : p(1) = · · · = p(10) = 0.1, (19)

which is equivalent to H∗0 : β1 = · · · = β9 = 0.

The simulation studies are performed with factors: (a) level of significance α =

0.05; (b) basis function in Equation (11) is applied; (c) 50 clusters (psus) with 15

individuals (ssus) sampled from each cluster, which makes a total of 750 units; (d)
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Intraclass Correlation Coefficients (ICC) (Lohr, 2010, pg. 174-176, ICC reflects the

dependency of the data) considered: 0.1, 0.3, and 0.6 to illustrate low, medium, and

high levels of correlation respectively. Notice that if ICC = 0 , all the observations are

uncorrelated. If ICC = 1, the ssus within the the same cluster are perfectly correlated

to each other, i.e., the individuals within the cluster will give exactly the same answers

to the survey questionnaire related to the response of interest; (e) following Eubank

(1997), three alternatives of (19) are considered. They are

p(k) =
1

10
+ β(k − 5.5)/10, for k = 1, · · · , 10, (20)

p(k) =
1

10
+ βcos

(
jπ(k − 0.5)

10

)
, for k = 1, · · · , 10, (21)

and

p(k) = Φ

[
βΦ−1

(
k

10

)]
− Φ

[
βΦ−1

(
k − 1

10

)]
, for k = 1, · · · , 10, (22)

where Φ(·) and Φ(·)−1 are cumulative distribution function and inverse cumulative

distribution function of the standard normal random variable respectively.

For alternatives (20) and (21), magnitude of the parameter β controls the distance

of the alternative’s departure from the null model, which is recovered when β = 0.

Since the influence of β is symmetric about β = 0, we only report the cases of β > 0.

For alternative (22), null model is recovered when β = 1. Values of β that are larger

or smaller than 1 produce more or less probability mass for the centrally numbered

categories.
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5.2 Simulation Steps

To generate a sample of clustered multinomial responses, we first generate correlated

multivariate normal random vectors, next we use probit functions to convert the

continuous responses to categorical responses.

For the proposed test W , q̂ is obtained via maximizing equation (13). In order

to estimate δ., 100, 000 complex multinomial data under the null hypothesis (19)

are generated. The covariance matrix V is estimated by these 100,000 samples.

δ̂. is obtained by averaging the eigenvalues of the matrix P−10 V̂. Test statistic is

calculated by (14). The empirical distribution of W0 (W under the null hypothesis

(19)) is obtained through the 100, 000 iterations, and is used to find the critical value

at significance level 0.05.

The proposed test q̂α is the maximizer of equation (15). Instead of calculating

a0.05 for each estimated δ̂., we approximate a0.05 by a product of δ̂. and the values

of a0.05 estimated under an SRS, which is 4.18 (Eubank & Hart, 1992). By using

this method, we only need to estimate δ. for each setting, which is much faster than

calculating the corresponding a0.05 for every simulated data. Notice that the solution

of Equation (16) requires large K approximations. From simulation study, solution

converges to the same value as long as K > 10.

We compare Type I error and statistical power of the proposed tests with those

from Pearson’s chi-squared test, the first order and second order corrected tests. Three

alternatives (20), (21) and (22) are used to illustrate possible influence on Type I error
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and statistical power from different data patterns. Below are the simulation steps for

an arbitrary alternative.

1. Generate 100, 000 samples of clustered multinomial under null hypothesis (19).

For each generated sample, we calculate the estimated proportion p̂ = (p̂(1), · · · , p̂(K−

1)). The estimated mean of p̂, say p̄, is calculated by averaging the 100, 000

p̂’s. The estimated covariance matrix V̂/
√
n is obtained by (p̂ − p̄)(p̂ −

p̄)′/(100, 000 − 1). The eigenvalues of the the matrix P−10 V̂ are calculated

using the eigen() function in R. â2 is calculated by (10).

2. Under null hypothesis (19), we search for q̂: the maximizer of criterion (13),

and obtain a value of W0 by (14). This procedure is repeated 100, 000 times to

create the empirical distribution of W0, and to find the 95% quantile of W0.

3. Under the given alternative, Pearson’s chi-squared test statistic, the first order

and second order corrected test statistics are calculated. Next, by searching all

q = 1, · · · , K − 1, q̂ is obtained by maximizing criterion (13). W is calculated

by equation (14). We then search q̂0.05 among q = 1, · · · , K − 1 to maximize

equation (15), where a0.05 = 4.18 ∗ δ̂..

4. We compare the test statistics in Step 3 with their corresponding rejection

criteria. The Pearson’s chi-square test statistic, the first order and the second

order corrected test statistics are compared with the 95% quantile of the central

chi-squared distribution with 9 degrees of freedom. W is compared with the
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95% critical value of W0 obtained in Step 2. q̂0.05 is compared with 0. If a

method rejects the alternative, the count of the rejection of this method is 1,

otherwise is 0.

5. Step 3 and 4 are repeated for 10, 000 times. The number of rejection of each

method, divided by 10, 000 is the empirical power of each method for the given

alternative, or is the empirical Type I error of each method when the alternative

is set to be the null model.

6. Steps 1-5 are repeated if other alternatives are given.

5.3 Simulation Results

This section presents the simulation results. Type I error and empirical power com-

parisons for the different tests are reported under three alternatives (20), (21), and

(22). Alternative (20) generates slow varying probabilities, alternative (21) generates

both slow varying and non-slow varying probabilities, and alternative (22) focuses on

certain data patterns.

5.3.1 Simulation Results by Alternative (20)

In this section, we examine the simulation results with alternative (20), i.e., p(k) =

1
10

+ β(k − 5.5)/10, for k = 1, · · · , 10. The null hypothesis is recovered when β = 0.

For β ranged from 0 to 0.14 with an increment of 0.01, 15 sets of probability vectors

(including the null hypothesis) are generated by (20). Two sets of probabilities for

20



β = 0.01 and β = 0.14 are plotted in Figure 1. These are the probabilities that are

used to generate the multinomial data. The probabilities for different categories are

very similar when β = 0.01, and become moderately slow varying as β increases.
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Figure 1: Probabilities generated by alternative (20) for β = 0.01 (left) and β = 0.14

(right). Probabilities vary slowly when β = 0.01, but vary greater when β = 0.14.

Figure 2 plots the empirical powers of the five tests, the proposed tests q̂0.05 and

W , Pearson’s chi-squared GOF test, and the first order and the second order corrected

tests, versus β in alternative (20) under ICC = 0.1, 0.3, and 0.6 respectively. For ICC

varies from 0.1, 0.3 to 0.6, observations within the same cluster are more correlated.

We first look at how the tests control the Type I error. This is equivalent to

check the power of the tests under alternative (20) when β = 0. When ICC = 0.1,

Pearson’s test controls the probability of the Type I error around 0.05. However,

when ICC = 0.3, probability of the Type I error of Pearson’s test is around 0.18 and

is around 0.76 when ICC = 0.6. The larger the ICC is, the more off the Type I error is
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Figure 2: The power curves of selected methods for simulated complex survey data

with respect to the alternative (20) p(k) = 1
10

+ β(k − 5.5)/10, for k = 1, · · · , 10.

From left to right, the plots are with ICC=0.1, 0.3 and 0.6 respectively
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for Pearson’s chi-squared test. All the other four tests control the type I error pretty

well. This is evident that Pearson’s chi-squared test should not be directly applied

to multinomial data from complex surveys.

We now examine the empirical powers of the proposed tests, and the first order

and second order corrected tests. For ICC = 0.1, 0.3, and 0.6, both proposed tests

W and q̂0.05 have higher power than the first order and second order corrected tests

when the underlying probabilities are varying slowly (β ≤ 0.07). On the other hand,

when the probabilities vary greatly (β > 0.07), the proposed tests perform similarly

as the first order and second order corrected tests in regards to empirical statistical

powers. In particular, the test q̂0.05 has the best empirical statistical power, and test

W has the second best empirical statistical power for alternative (20). In summary,

the proposed tests have improved statistical powers compared with the first order

and second order corrected tests, when the underlying probabilities vary slowly for

multinomial data from complex surveys.

5.3.2 Simulation Results by Alternative (21)

For alternative (21), p(k) =
1

10
+ βcos

(
jπ(k − 0.5)

10

)
, for k = 1, · · · , 10, both β

and j are parameters that control variability among underlying probabilities. The

probability vector vary greatly when j increased. We choose j = 2 (medium varying

underlying probabilities) and j = 4 (high varying underlying probabilities) to examine

the performance of the proposed tests. For each selected j, 11 values of β from 0 to
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Figure 3: Probabilities in simulation studies generated by alternative (21) with j = 2

for β = 0.01 (left) and β = 0.1 (right). Probabilities vary slowly when β = 0.01, but

vary greatly when β = 0.1.
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Figure 4: Probabilities in simulation studies generated by alternative (21) with j = 4

for β = 0.01 (left) and β = 0.1 (right). Probabilities vary slowly when β = 0.01, but

vary greatly when β = 0.1.
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Figure 5: The power curves of selected methods for simulated complex survey data

with respect to the alternative (21) p(k) = 1
10

+ βcos
(
jπ(k−0.5)

10

)
, for k = 1, · · · , 10

with j = 2.

0.1 are selected with step 0.01. Figure 3 and 4 plot the probability vectors for j = 2

with β = 0.01 and β = 0.1 and j = 4 with β = 0.01 and β = 0.1.

Figures 5 and 6 plot the statistical powers of the five tests versus β for ICC =

0.1(Figures5a and 6a), 0.3(Figures5b and 6b), 0.6(Figures5c and 6c) for the alter-

native (21) with j = 2 and j = 4 respectively.

Notice that null hypothesis (19) is recovered when β = 0. It can be seen that

all the tests except Pearson’s chi-squared test are able to control the level of signifi-

cance at the nominal level (α = 0.05) very well. For j = 2, both proposed tests have

higher statistical power than the first order and second order corrected tests, when the

underlying probabilities are varying slowly (β ≤ 0.03). All of the four tests demon-
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Figure 6: The power curves of selected methods for simulated complex survey data

with respect to the alternative (21) p(k) = 1
10

+ βcos
(
jπ(k−0.5)

10

)
, for k = 1, · · · , 10

with j = 4.

strate very similar empirical statistical powers when the underlying probabilities vary

greatly (β > 0.03). In this setting, the two proposed tests are both competitive, and

the proposed test W performs slightly better than q̂0.05.

The j = 4 case generates highly varying underlying probabilities as can be seen

from Figure 4. One can see that the proposed test W is competitive, but the statistical

power of test q̂0.05 has decreased. As ICC goes up, test W becomes the best in

regarding statistical power. These results show that the proposed test W is stable

in both slow varying and non-slow varying cases. When the underlying probabilities

are varying slowly, the proposed test W performs better than the first order and

second order corrected tests. When the underlying probabilities are varying greatly,
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Figure 7: Probabilities in simulation studies generated by alternative (4.5) for β = 0.6

(left) and β = 1.4 (right). Maximum probabilities are p(1) and p(10) for β = 0.6, and

maximum probabilities are p(5) and p(6) for β = 1.4.

the proposed test W is as good as the existing approaches.

5.3.3 Simulation Results by Alternative (22)

For alternative (22), p(k) = Φ
[
βΦ−1

(
k
10

)]
− Φ

[
βΦ−1

(
k−1
10

)]
, for k = 1, · · · , 10. β is

selected from 0.6 to 1.4 with step 0.1, where null hypothesis (19) is recovered when

β = 1. Alternative (22) simulates a set of moderately slow varying probabilities with

bell curves. Notice that, the maximum probability usually occurs at the first and

the last categories when β is between 0.6 and 1.0. For example, when β = 0.6, the

maximum probabilities are p(1) and p(10), which are both around 0.221 as shown

in the left graph of Figure 7. On the other hand, the largest probabilities occur in

the middle categories when β is between 1.0 and 1.4. For example, when β = 1.4,

p(5) = p(6) = 0.139 are the maximum probabilities, which is shown in the right graph

of Figure 7.
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Figure 8: The power curves of selected methods for simulated complex survey data

with respect to the alternative (22) p(k) = Φ
[
βΦ−1

(
k
10

)]
− Φ

[
βΦ−1

(
k−1
10

)]
, for k =

1, · · · , 10.

Figure 8 plots the empirical powers of the five tests versus β with ICC= 0.1(Figure8a),

0.3(Figure8b), and 0.6(Figure8c) respectively. Note that null hypothesis (19) is sim-

ulated when β = 1, which is located in the middle of the graphs. Again, Pearson’s

chi-squared test is not able to control the nominal level of significance α = 0.05. All

other four tests can control the desired Type I error.

The proposed test W outperforms the first order and second order corrected tests,

and it is superior than the proposed test q̂0.05 when β < 1. When β > 1, the proposed

test q̂0.05 becomes almost as good as the proposed test W , and both of them have

higher statistical power than first order and second order corrected tests. Though all

methods (not including Pearson’s chi-squared test) perform similarly with each other,

the proposed test q̂0.05 works best under alternative (22).
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5.3.4 Summary of Simulation Results

In this section, we summarize the findings of simulation studies. First, both proposed

tests, first and second corrected tests control Type I error at the pre-specified level

of significance under all settings. Second, comparing with first and second order cor-

rected tests, the proposed tests substantially improve the empirical statistical powers

when the underlying probabilities vary slowly. Third, the proposed test W shows a

great stability in statistical powers, and performs competitively with other methods

in cases of non-slow varying probability. Fourth, the proposed test q̂α work best under

alternative (22). Finally, as a result of the comparison between alternative (20) and

(21), we conclude that the proposed test q̂α is the most powerful one for slow varying

probabilities, but it is not as stable as the proposed test W for non-slow varying prob-

ability cases. In another perspective of view, the proposed test q̂α is more sensitive

in detecting small differences among the underlying probabilities, but the proposed

test W is more stable for various cases. In practice, the selected approach should be

determined by the characteristics of the multinomial data.

6 Application

In this section, we apply the proposed Neyman smooth-type GOF tests in complex

surveys to real life problems. For comparison purpose, the results of GOF tests, such

as Pearson’s chi-squared test, the first order and second order corrected tests (Rao
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& Scott, 1981, 1984), are also reported. Data is from the National Youth Tobacco

Survey (NYTS). We are interested in testing the difference among the severity groups

on tobacco usage for Asian and American Indian/Alaska Native students.

6.1 Data Description

The NYTS is to provide data support for research related to the use of tobacco

among middle and high school students. A variety of tobaccos are included, such

as cigarettes, cigars, hookahs, electronic cigarettes, and so on. NYTS started in

1999, and continued in 2000, 2002, 2004, 2006, 2011, 2012, 2013, 2014 until now.

The Centers for Disease Control and Prevention (CDC) and the Food and Drug

Administration (FDA) have participated in the management of NYTS since 2011.

The 2014 NYTS is a stratified three-stage clustered sample (Office on Smoking and

Health (2014)). 16 strata were created in U.S. based on predominant minority (non-

Hispanic Black and Hispanic) and the factor of urban/nonurban. A psu is defined

as a county, a combination of several small counties, or part of a large county. More

detailed information on the psu can be obtained from the Office on Smoking and

Health (2014, pg. 7). Middle schools and high schools were considered as ssus in

each psu. In each selected school, 1 or 2 classes were selected for every grade. All

students in the selected classes were eligible for the interview. Sampling was done

without replacement. Figure 9 shows a concise survey design flow chart of NYTS.

More details can be found in Chapter 2 of Office on Smoking and Health (2014).
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U.S. 

Stratum 1 Stratum i Stratum 16 

Psu n1 Psu 1 Psu 1 Psu j Psu ni Psu 1 Psu n16 

Large  
School 
170 

Medium 
School 
20 

Small 
School 
30 

2 classes/grade 1 class/grade 1 class/grade 

. . . . . . . . . . . . 

. . . . . . . . . . . . 

. . . 

. . . 

Figure 9: NYTS 2014 sampling design chart.

There are about 81 questions in the questionnaire. Students were required to an-

swer these questions using pencils. The collected data was trimmed and the sampling

weights of the individuals were calculated based on the sampling design and nonre-

sponse adjustments. Office on Smoking and Health (2014)[chap 4] gives a detailed

description on how to calculate the sampling weight. The 2014 NYTS data consists

of 157 variables (including weight variable) and a total of 22, 007 observations.

6.2 Severity Differences Among Asian Students Smokers

In this example of application, we focus on Asian students who smoked during the past

30 days before they were surveyed. 25 out of 973 Asian students reported that they

smoked in the past 30 days. In addition, they also reported the number of cigarettes

smoked per day, which was categorized into 5 levels, < 1/day (light smokers), 1/day
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(moderately light smokers), 2 − 5/day (medium smokers), 6 − 10/day (moderately

heavy smokers), and ≥ 11/day (heavy smokers).

We are interested in examining the differences of proportions regarding smoking

severity among these students. The null hypothesis is

H0 : p(1) = · · · = p(5) =
1

5
. (23)

The observed, weighted counts and the estimated proportions of the 5 groups are

shown in Table 1. Figure 10 plot the estimated proportions p̂(k)’s.

Number Group < 1 1 2-5 6-10 ≥ 11 Total

Counts 7 6 8 2 2 25

Weighted Counts 6840.261 5818.418 6595.912 1391.909 1907.703 22554.2

p̂(k) 0.303 0.258 0.292 0.062 0.085 1

Table 1: Observed and weighted data for Asian students who reported smoking during

the past 30 days of the survey from NYTS 2014. Proportions p̂(k) is calculated using

weighted data. “Number group” are the number of cigarettes smoked per day.

The observed sample size in Table 1 is n = 25. We find δ̂. = 1.21677 and â ≈ 0.

The test statistics of the first order and second order corrected tests are

X2
C =

X2

δ̂.
=

K∑
k=1

n
(p̂(k)− p0(k))2

p0(k)
/δ̂. = 5.62

and, because â ≈ 0,

X2
S =

X2

δ̂.(1 + â2)
=

X2
C

(1 + â2)
≈ 5.62.
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Figure 10: Estimated proportions of the 5 smoking groups using weighted counts in

Table 1.

Compared to χ2(5) at significance level of 0.05, P-value =0.23 for both tests. We fail

to reject the null hypothesis (23).

Next, we use the proposed methods to test the hypothesis. Follow simulation

step2, we can simulate the empirical distribution of W0 and find 95% quantile of W0.

By searching all q = 1, · · · , 5 − 1, q̂ is the one that maximizes equation (13). We

found that

q̂ = 1, W = 2.99, and p− value = 0.039.

For the proposed test q̂α, we have

q̂0.05 = 1 and p− value = 0.033.

Both W and q̂α tests reject hypothesis (23) at level of 0.05.
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In this example, the first order and second order corrected tests fail to reject

the null hypothesis (23) at level of significance 0.05, though it was observed that

the proportions of Asia students who smoked 6 − 10 and ≥ 11 cigarettes per day

were low. On the other hand, both proposed test W and q̂α are able to reject the

null hypothesis at level 0.05, indicating that the numbers of light, moderately light,

medium, moderately heavy, and heavy smokers are different among the Asian students

(grades 6-12) in the U.S., which is consistent with what was observed.

7 Conclusion

Categorical data analysis is widely used in complex surveys arising from sociological,

behavioral, economical, and medical research studies, where the observations are

usually correlated. In this research, we proposed two Neyman smooth-type GOF

tests (W and qα) for use in complex survey multinomial data. These tests control

the type I error at specified significance level very well. They also show improved

statistical powers compared with some classical methods, especially when the sample

size is small and the differences among the estimated proportions of categories are not

large (slow varying probabilities). Simulation results show that test q̂α is the most

powerful test for slow varying probability data compared to test W and the first and

second order corrected tests. The proposed test W is a stable test, which outperforms

the first order and second order tests when the probabilities are slow varying, and is

as good as the first order and second order corrected tests when the probabilities are
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varying greatly.

The application of the idea of Fourier transformation and dimensional reduction

(order selection) in survey data provides a broad view of many possible topics. For

example, for a nonparametric regression model yi = µ(ti) + εi in survey data, we

may be interested in testing if µ(ti) is a constant or not. We can introduce the basis

function with Fourier transformation, extend the classical nonparametric regression

estimator to weighted estimators by incorporating survey weights, and a tuning pa-

rameter q for dimensional reduction. Many other tests could be derived by a similar

procedure as we have done in this research. We expect the proposed tests to be more

sensitive and to provide more statistical power in detecting the differences by taking

advantage of dimensional reduction when constructing test statistics.

Appendix

Below is the proof of Theorem 1.

Proof. First, we prove the theorem in an SRS without replacement case. Next, we

discuss complex design case. In this proof, we define p∗ = (p′, pk)
′, p∗0 = (p′0, p0k)

′,

p̂∗ = (p̂′, p̂k)
′, and P∗ = D(p∗)− p∗p∗

′
.

In an SRS without replacement,

var(p̂∗) =
1

n

(
1− n

N

) N

N − 1
P∗ ≈ 1

n

(
1− n

N

)
P∗ =

1

ñ
P∗.
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When ñ→∞,

√
ñ(p̂∗ − p∗)→ N(0, D(p∗)− p∗p∗

′
)

and

√
ñ
(
F̂− F

)
→ N

(
0, D

(
p∗

p∗0

)
−
(

p∗√
p∗0

)(
p∗√
p∗0

)′)
.

Therefore,

√
ñ(b− β) =

√
ñ
(
X′[k]F̂−X′[k]F

)
(24)

→ N(0,X′[k]D

(
p∗

p∗0

)
X[k] −X′[k]

(
p∗√
p∗0

)(
p∗√
p∗0

)′
X′[k]

= N

(
0,X′[k]D

(
p∗

p∗0

)
X[k] − ββ′

)

If the design is complex, let var(p̂∗) =
1

n̂
V∗. We can derive

√
n̂(b− β)→ N

(
X′[k]D

(
1√
p∗0

)
V∗D

(
1√
p∗0

)
X[k]

)
(25)

as n̂→∞. For some special case, such as a stratified random sampling with replace-

ment and with proportional allocation, and two stage cluster sampling, with the first

stage proportional to psu size and second stage as SRS with replacement, Rao and

Scott (1981) gives detailed formula of V∗.

The proofs of Theorems 2-4 follow from proofs of Theorems 1-3 in Eubank (1997).

When constructing the test statistics, we assume that V (p̂) = δ.Vsrs(p̂). The maxi-

mizing criteria (13) and (15) are mainly replacing sample size n by the effective size

n̂ = n/δ.. Therefore, proofs of Theorems 2-4 follow from Eubank (1997).
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