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Goodness-of-fit test for meta-
analysis
Zhongxue Chen1, Guoyi Zhang2 & Jing Li1

Meta-analysis is a very useful tool to combine information from different sources. Fixed effect and 
random effect models are widely used in meta-analysis. Despite their popularity, they may give us 
misleading results if the models don’t fit the data but are blindly used. Therefore, like any statistical 
analysis, checking the model fitting is an important step. However, in practice, the goodness-of-fit 
in meta-analysis is rarely discussed. In this paper, we propose some tests to check the goodness-of-
fit for the fixed and random effect models with assumption of normal distributions in meta-analysis. 
Through simulation study, we show that the proposed tests control type I error rate very well. To 
demonstrate the usefulness of the proposed tests, we also apply them to some real data sets. Our 
study shows that the proposed tests are useful tools in checking the goodness-of-fit of the normal 
models used in meta-analysis.

Due to technological advancement, the speed of generating large data is increasing. The tremendous 
amount of data provide us opportunities to answer many scientific questions. On the other hand, how-
ever, we are facing the challenge: how to extract useful information from different but related studies. 
Meta-analysis has been shown to be a very useful tool to combine information; it has being intensively 
used in data analysis1. For example, when we used “((meta-analy* or metaanaly* or metanaly* or pooled 
analy* or consorti*) or meta-analysis)” to retrieve researches on meta-analysis from the PubMed data-
base (http://www.ncbi.nlm.nih.gov/pubmed), it returned 65,881 papers published within the most recent 
five years (as of February 8, 2015). This demonstrates that meta-analysis is a popular and useful statistical 
tool in data analysis.

Fixed effect (FE) model and random effect (RE) model are the two most commonly used mod-
els in meta-analysis, though some less frequently used methods, such as Bayesian meta-analysis, and 
p-value combining approaches, are also available in the literature. In practice, many researchers conduct 
meta-analysis as follows. First, they perform the Cochran’s test to check the assumption of homogeneity 
of effects. If the assumption is not rejected, the FE model is used and the results from FE are reported. 
On the other hand, if this test provides evidence against the homogeneity assumption, the RE model is 
then used, and the results from the RE model are used. Sometimes, results from both FE and RE models 
were reported1.

An important, but usually unanswered, question in meta-analysis is: how the models used fit the data. 
Just like in any statistical modeling, the goodness-of-fit test is a critical step to check the model adequacy. 
The reason we should not ignore this step is that results from an inadequate model may be misleading. 
Unfortunately, this issue is rarely, if not at all, discussed in practice. There are several possible explana-
tions. First, although many software packages are available, they do not provide GoF tests. Second, many 
researchers who conduct meta-analysis have limited statistical background and are not aware of this 
issue and its consequences. Last but not least, no GoF test has been developed for meta-analysis in the 
literature, though some GoF tests have been proposed for generalized linear mixed models2–6.

To fill the gap, in this paper we propose some GoF test approaches for meta-analysis to assess if the 
data are jointly normally distributed, regardless of the type of the mean effects. Through simulation we 
show that the proposed tests can control type I error rate. We also conduct some simulations to compare 
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the power performance among the proposed tests. Finally, the proposed tests are applied to two real data 
sets to demonstrate their usefulness.

Method
Suppose we have statistics yi (e.g., mean difference, effect size, log odds ratio, etc.) and its variance, vi, 
for study i (i =  1, 2, …, K) of K related but independent studies. We want to combine the information 
from those K studies using the following random effect model:

β= + , ( )y e 1i i i

where the independent study-specific effects, βi’s, represent a random sample from a grand normal pop-
ulation with overall mean μ (e.g, μ =  ln(OR) with OR being the overall OR across studies for the binary 
trait, or the average mean difference across studies for the quantitative trait) and between-study variance 
τ2. In other words, we assume β β β, , , K1 2  are independently and identically distributed as µ τ( , )N 2 . 
We also assume the study error terms are independent and follow a normal distribution, i.e, 
∼ ( , )e N v0i i . Note that here the variance vi for each individual study may not be the same.

K τ 2, a, b AD CvM SW K τ 2, a, b AD CvM SW

5

0, 0.1, 1 0.052 0.053 0.053

20

0, 0.1, 1 0.051 0.051 0.050

0.1, 0.1, 1 0.050 0.049 0.049 0.1, 0.1, 1 0.041 0.040 0.039

1, 0.1, 1 0.041 0.038 0.042 1, 0.1, 1 0.037 0.041 0.037

1, 0.01, 0.1 0.051 0.048 0.050 1, 0.01, 0.1 0.052 0.052 0.047

1, 0.001, 0.01 0.048 0.047 0.048 1, 0.001, 0.01 0.043 0.040 0.044

10

0, 0.1, 1 0.044 0.041 0.044

30

0, 0.1, 1 0.046 0.050 0.038

0.1, 0.1, 1 0.048 0.056 0.043 0.1, 0.1, 1 0.065 0.065 0.063

1, 0.1, 1 0.054 0.057 0.050 1, 0.1, 1 0.047 0.040 0.050

1, 0.01, 0.1 0.062 0.058 0.060 1, 0.01, 0.1 0.045 0.048 0.050

1, 0.001, 0.01 0.051 0.048 0.052 1, 0.001, 0.01 0.056 0.062 0.054

15

0, 0.1, 1 0.038 0.045 0.046

50

0, 0.1, 1 0.037 0.036 0.047

0.1, 0.1, 1 0.052 0.060 0.045 0.1, 0.1, 1 0.055 0.058 0.058

1, 0.1, 1 0.049 0.046 0.050 1, 0.1, 1 0.046 0.049 0.046

1, 0.01, 0.1 0.045 0.048 0.052 1, 0.01, 0.1 0.051 0.050 0.046

1, 0.001, 0.01 0.051 0.044 0.055 1, 0.001, 0.01 0.063 0.059 0.058

Table 1. Estimated type I error rates for each method under settings with different number of studies 
(K), and parameters (τ2, a, b) from 1,000 replicates at significant level 0.05.

K a, b AD CvM SW K a, b AD CvM SW

5

0.001,0.01 0.058 0.056 0.065

20

0.001,0.01 0.174 0.155 0.177

0.001,0.1 0.055 0.052 0.056 0.001,0.1 0.088 0.080 0.079

0.001,1 0.043 0.040 0.043 0.001,1 0.048 0.034 0.048

0.001,10 0.047 0.047 0.047 0.001,10 0.047 0.042 0.056

10

0.001,0.01 0.078 0.074 0.084

30

0.001,0.01 0.263 0.202 0.308

0.001,0.1 0.069 0.064 0.066 0.001,0.1 0.118 0.110 0.117

0.001,1 0.039 0.042 0.036 0.001,1 0.044 0.045 0.040

0.001,10 0.050 0.053 0.056 0.001,10 0.039 0.036 0.045

15

0.001,0.01 0.104 0.091 0.114

50

0.001,0.01 0.496 0.374 0.622

0.001,0.1 0.074 0.069 0.067 0.001,0.1 0.248 0.212 0.241

0.001,1 0.037 0.044 0.029 0.001,1 0.038 0.038 0.034

0.001,10 0.058 0.057 0.050 0.001,10 0.046 0.048 0.056

Table 2. Estimated power for each method under settings with different number of studies (K), and 
different values of (a, b) from 1,000 replicates at significant level 0.05. Here β ′si  are generated from the 
uniform distribution U(−1, 1) and the ei’s from normal distribution N(0, vi).
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When τ2 =  0, the random effect model (1) becomes a fixed effect model. Therefore, fixed effect model 
is a special case of the random effect model. The parameters µ and τ 2 in (1) are usually estimated 
through a two-step approach. In the first step, τ 2 will be estimated using one of many different estima-
tors7–12. In general, those approaches give similar results and none of them performs uniformly the best. 
In addition, among those estimators, the DerSimonian-Laird (DL) method is most commonly used. 
Therefore, in this paper the DL estimator is used.

The parameter, τ2, which measures the between-study variance, is estimated by10:

τ =
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homogeneity13,14 where the null hypothesis is β β β β= = = =H : K0 1 2 . Q is defined as follows:
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K a, b AD CvM SW K a, b AD CvM SW

5

0.001,0.01 0.230 0.222 0.232

20

0.001,0.01 0.893 0.874 0.911

0.001,0.1 0.231 0.221 0.236 0.001,0.1 0.863 0.827 0.882

0.001,1 0.150 0.149 0.146 0.001,1 0.612 0.593 0.636

0.001,10 0.073 0.074 0.074 0.001,10 0.184 0.180 0.187

10

0.001,0.01 0.588 0.566 0.610

30

0.001,0.01 0.985 0.977 0.993

0.001,0.1 0.521 0.505 0.547 0.001,0.1 0.961 0.953 0.967

0.001,1 0.339 0.327 0.337 0.001,1 0.800 0.784 0.806

0.001,10 0.118 0.112 0.125 0.001,10 0.279 0.257 0.289

15

0.001,0.01 0.769 0.750 0.813

50

0.001,0.01 1.000 0.999 1.000

0.001,0.1 0.728 0.709 0.759 0.001,0.1 0.995 0.994 0.997

0.001,1 0.517 0.494 0.538 0.001,1 0.942 0.927 0.943

0.001,10 0.161 0.154 0.170 0.001,10 0.364 0.347 0.385

Table 3. Estimated power for each method under settings with different number of studies (K), and 
different values of (a, b) from 1,000 replicates at significant level 0.05. Here β ′si  are generated from the 
log-normal distribution LN(0, 1) and the ei’s from normal distribution N(0, vi).

K a, b AD CvM SW K a, b AD CvM SW

5

0.001,0.01 0.073 0.071 0.077

20

0.001,0.01 0.274 0.262 0.270

0.001,0.1 0.078 0.080 0.074 0.001,0.1 0.256 0.252 0.259

0.001,1 0.065 0.064 0.068 0.001,1 0.152 0.142 0.151

0.001,10 0.068 0.066 0.063 0.001,10 0.053 0.051 0.051

10

0.001,0.01 0.173 0.164 0.166

30

0.001,0.01 0.365 0.372 0.353

0.001,0.1 0.159 0.154 0.157 0.001,0.1 0.332 0.324 0.335

0.001,1 0.094 0.086 0.096 0.001,1 0.185 0.178 0.212

0.001,10 0.062 0.057 0.058 0.001,10 0.065 0.070 0.053

15

0.001,0.01 0.215 0.210 0.206

50

0.001,0.01 0.527 0.511 0.509

0.001,0.1 0.215 0.211 0.212 0.001,0.1 0.519 0.514 0.508

0.001,1 0.121 0.120 0.123 0.001,1 0.268 0.256 0.292

0.001,10 0.052 0.049 0.047 0.001,10 0.078 0.078 0.075

Table 4. Estimated power for each method under settings with different number of studies (K), and 
different values of (a, b) from 1,000 replicates at significant level 0.05. Here β ′si  are generated from the 
double exponential distribution DE(0, 1) and the ei’s from normal distribution N(0, vi).
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Note that under the normality assumption in model (1) and the null hypothesis H 0 for the Cochran’s 
test, Q has a chi-square distribution with degrees of freedom (df) equal to K-1. A large value of Q (or a 
small p-value from the Cochran’s test) indicates the lack of fit of the fixed effect model; a random effect 
model as (1) is then usually performed.

In the second step, the overall effect of µ is then estimated by the weighted mean µ β= ∑ /∑= =
ˆ w wi

K
i i i

K
i1 1 , 

and its variance is estimated by Var µ( ) = /∑ =ˆ w1 i
K

i1 . Then the hypothesis is tested for overall effect 
across all studies as: H0: μ =  0 vs H1: μ ≠ 0. The Wald test, µ µ χ= / ( ) ∼ˆ ˆT var2

1
2 asymptotically under 

H0, is the standard test of the hypothesis about the overall mean.
Like any statistical approach, model checking is a critical step as the results from a model with lack 

of fit may be misleading. Several goodness-of-fit tests have been proposed in the literature for the gen-
eralized linear mixed models2–6, which include the random effect models as special cases. However, 
unlike the ordinary random effect models where the within cluster error terms are assumed to be inde-
pendently and identically distributed (iid) as a normal distribution, the RE model (1) in meta-analysis 
assumes the error terms ′e si  have known and possible different variances. Therefore, those existing 
goodness-of-fit tests designed for the generalized linear mixed models are inapplicable for the random 
effect model (1) in meta-analysis.

K a, b AD CvM SW K a, b AD CvM SW

5

0.001,0.01 0.289 0.296 0.282

20

0.001,0.01 0.845 0.843 0.834

0.001,0.1 0.299 0.304 0.295 0.001,0.1 0.878 0.870 0.858

0.001,1 0.266 0.268 0.252 0.001,1 0.828 0.824 0.826

0.001,10 0.203 0.205 0.202 0.001,10 0.678 0.660 0.676

10

0.001,0.01 0.572 0.581 0.549

30

0.001,0.01 0.969 0.967 0.963

0.001,0.1 0.594 0.591 0.565 0.001,0.1 0.962 0.962 0.954

0.001,1 0.573 0.571 0.550 0.001,1 0.939 0.937 0.938

0.001,10 0.407 0.405 0.409 0.001,10 0.831 0.822 0.839

15

0.001,0.01 0.789 0.786 0.772

50

0.001,0.01 1.000 1.000 0.999

0.001,0.1 0.770 0.764 0.755 0.001,0.1 1.000 1.000 0.998

0.001,1 0.716 0.716 0.707 0.001,1 0.994 0.992 0.994

0.001,10 0.548 0.541 0.548 0.001,10 0.921 0.911 0.927

Table 5. Estimated power for each method under settings with different number of studies (K), and 
different values of (a, b) from 1,000 replicates at significant level 0.05. Here β ′si  are generated from the 
Cauchy distribution Cauchy (0, 1) and the ei’s from normal distribution N(0, vi).

K a, b AD CvM SW K a, b AD CvM SW

5

0.001,0.01 0.282 0.284 0.273

20

0.001,0.01 0.879 0.873 0.868

0.001,0.1 0.277 0.288 0.275 0.001,0.1 0.875 0.865 0.863

0.001,1 0.273 0.282 0.261 0.001,1 0.829 0.817 0.810

0.001,10 0.219 0.220 0.211 0.001,10 0.632 0.615 0.641

10

0.001,0.01 0.620 0.621 0.600

30

0.001,0.01 0.965 0.963 0.953

0.001,0.1 0.608 0.607 0.591 0.001,0.1 0.961 0.961 0.957

0.001,1 0.539 0.535 0.531 0.001,1 0.947 0.942 0.938

0.001,10 0.388 0.383 0.387 0.001,10 0.816 0.799 0.823

15

0.001,0.01 0.806 0.802 0.779

50

0.001,0.01 0.998 0.998 0.996

0.001,0.1 0.783 0.789 0.758 0.001,0.1 0.996 0.996 0.997

0.001,1 0.725 0.721 0.718 0.001,1 0.993 0.991 0.994

0.001,10 0.549 0.540 0.542 0.001,10 0.933 0.921 0.932

Table 6. Estimated power for each method under settings with different number of studies (K), and 
different values of (a, b) from 1,000 replicates at significant level 0.05. Here β ′si  are generated from the T1 
distribution and the ei’s from normal distribution N(0, vi).



www.nature.com/scientificreports/

5Scientific RepoRts | 5:16983 | DOI: 10.1038/srep16983

To fill this gap, we propose some new goodness-of-fit tests for the random effect model (1). It can be 
easily shown that under model (1), = ( , , …, )′Y Y Y Y K1 2  has a multivariate normal distribution, i.e., 

µ= ( , Σ)Y MVN , where the covariance matrix 

τ

τ

τ

Σ =
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V

V
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0 0 K
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2

2

. If the Cochran test statistic Q is 

large, from (2) we know that τ 2 is expected to be large as well. On the other hand, if τ 2 is large enough, 
the covariance matrix Σ can be approximated by a matrix with all diagonal elements equal to a constant. 
In this case the yi’s can be seen as approximately K iid samples from a normal distribution. Therefore, 
the normality tests can be used to check the goodness-of-fit for model (1). In this paper, we propose 
several goodness-of-fit tests for model (1) based on the following popular and powerful normality tests: 
the Anderson-Darling (AD) test15,16, the Cramer-von Mises (CvM) test15,17,18, and the Shapiro-Wilk (SW) 
test19. In general, from model (1) the yi’s are samples from K independent but not identical normal dis-
tributions; the p-values from the normality tests are not accurate. However, to overcome this difficulty 
we can estimate those p-values based on resampling approaches, such as parametric bootstrap. Specifically, 
the proposed tests are conducted by the following steps:

 Step 1. For given ,yi  (i =  1, 2, …, K), calculate the statistics ad0, cvm0, and sw0, from the AD, CvM, 
and SW tests, respectively;
Step 2. Estimate τ τ ,ˆby2 2  using (2);

 Step 3. Resample B sub-samples from ( , Σ)ˆMVN 0 , where Σ̂ is the estimate of Σ with τ 2 being 
replaced by its estimate τ̂ 2. For each sample j (j =  1, 2, …, B), calculate statistics, adj, cvmj, and swj 
using the AD test, the CvM test, and the SW test, respectively;

 Step 4. The p-values are estimated by the portions of adj, cvmj, and swj, which are greater than ad0, 
cvm0, and sw0, respectively.

Study OR 95% CI study OR 95% CI study OR 95% CI

1 1.11 0.51,2.39 5 0.88 0.39,1.95 9 1.06 0.63,1.79

2 0.97 0.78,1.21 6 1.28 0.71,2.30 10 2.95 1.54,5.63

3 1.13 0.73,1.72 7 1.19 0.69,2.08 11 2.36 1.18,4.72

4 1.08 0.42,2.75 8 3.82 1.37,10.60 12 1.68 1.05,2.70

Table 7. Data set 1. Estimated odds ratio and its 95% CI from each study. Data were taken from Bachmann 
et al. and Riley et al.20,21.

Study OR 95% CI study OR 95% CI study OR 95% CI

1 3.16 1.69,5.94 16 1.90 1.10,3.40 31 1.11 0.66,1.87

2 3.91 2.16,7.13 17 1.26 1.13,1.40 32 0.67 0.35,1.28

3 1.42 1.03,1.97 18 1.66 1.04,2.62 33 1.50 1.10,1.90

4 2.51 1.17,5.53 19 1.03 0.63,1.69 34 1.31 0.92,1.87

5 2.40 1.16,3.60 20 2.85 1.06,4.64 35 1.20 0.87,1.65

6 9.80 3.50,28.20 21 0.94 0.72,1.24 36 1.60 1.05,2.43

7 1.20 0.70,2.05 22 2.05 1.59,2.63 37 1.31 1.25,1.38

8 4.66 1.65,13.16 23 1.33 1.11,1.60 38 1.58 1.10,2.27

9 2.25 0.98,5.21 24 1.16 0.88,1.52 39 1.99 1.11,3.55

10 1.39 1.19,1.62 25 1.18 0.92,1.51 40 1.78 1.05,3.04

11 1.34 1.03,1.75 26 1.56 1.03,2.36 41 1.09 1.05,1.14

12 0.91 0.55,1.49 27 1.02 0.77,1.37 42 1.13 0.55,2.37

13 1.08 0.95,1.22 28 0.96 0.74,1.25 43 0.71 0.45,1.10

14 0.86 0.46,1.62 29 1.41 1.00,2.00 44 1.29 1.13,1.49

15 2.23 1.16,4.31 30 1.56 0.96,2.59

Table 8. Data set 2. Estimated odds ratio and its 95% CI from each study. Data were taken from Danese 
and Tan23.
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Note that the parameter µ in model (1) has no effect on the normality tests, and therefore, in Step 3 
we can simulate data from a multivariate normal distribution with mean vector equal to 0, instead of µ̂.

To assess the performance of the proposed tests, we estimate their type I error rates and the detect-
ing powers using simulated data. We also illustrate the use of the proposed tests through two real data 
applications.

Results
Simulation results. In the simulation study, we assume there are K (K =  5, 10, 15, 20, 30, 50) inde-
pendent studies. We also assume the variances (vi) of the K effects are random samples from the uniform 
distribution U(a, b) with different values of a and b. To estimate the type I error rate, for the null hypoth-
esis the parameter τ 2 takes three values 0, 0.1, and 1.0. The pair of (a, b) take values (0.1, 1.0), (0.01, 0.1), 
and (0.001, 0.01). Without loss of generality, β ′si  are assumed iid samples from the normal distribution 
N(0, τ 2). In our simulation study, we use B =  1,000 bootstraps to estimate p-value. The significance level 
0.05 and 1,000 replicates are used to estimate the type I error rate and power.

Table 1 reports the estimated type I error rates for each of the three methods. It clearly shows that the 
proposed tests control type I error rate around the nominal level 0.05 no matter whether the effects are 
homogeneous (τ 2 =  0), somehow heterogeneous (τ 2 is relatively small, e.g., τ 2 =  0.1 while a =  0.1, b =  1), 
or highly heterogeneous (τ 2 is relatively large, e.g., τ 2 =  0.1 while a =  0.001 and b =  0.01).

When assessing the detecting power, for the alternative hypothesis, we assume β ′si  in model (1) have 
the following distributions: (a) uniform U(-1, 1), (b) log-normal LN(0, 1), (c) double exponential or 
Laplace DE(0, 1), (d) Cauchy Cauchy(0, 1), and (e) t-distribution with df =  1, T1. For the error term, ei, 
it is independently sampled from a normal distribution with mean 0 and variance vi, which is a random 
sample from the uniform distribution U(a, b). The values of the pair of (a, b) are set to be (0.001, 0.01), 
(0.001, 0.1), (0.001, 1), and (0.001, 10).

Tables  2–6 report the estimated power values from each method under different settings. It can be 
seen that when study size (K) is small, all methods have relatively low power values. However, the detect-
ing power increases when the sample size increases. In general, the power decreases when the variances 
vi’s and their heterogeneity increase (e.g, b increases). From the simulation results, we can observe that 
these three methods have similar performance, and none of them is uniformly more powerful than the 
other two under all conditions.

Real data application. We use two real data sets of meta-analysis to illustrate the usefulness of the 
proposed tests. Both of the original data sets gave the estimated odds ratio (OR) and its 95% confidence 
interval (CI) for each study included in the meta-analyses. Table 7 lists the data set 1 from a meta-analysis 
of 12 trials that exam the effect of patient rehabilitation designed for geriatric patients on functional out-
come improvement. The data were taken from Figure 4 of Riley et al.20, part of the Figure 2 of Bachmann 
et al.21. The p-value from the Cochran’s test for homogeneity was 0.021. Therefore, the authors ran the 
random effect model and estimated the overall OR as 1.36 with 95% CI (1.08, 1.71)20,21. It should be 
pointed out that with small sample size like K =  12 here, the Cochran test is anti-conservative22. Table 8 
lists the data set 2, which were taken from Figure 2 of Danese and Tan23. In data set 2 there are 44 
studies investigating the association between childhood maltreatment and obesity. The p-value from the 
Cochran’s test for homogeneity was very small (< 0.0001); the authors then chose random effect model 
in their meta-analysis. The overall OR was estimated as 1.36 with 95% CI (1.26, 1.74).

In order to use the proposed tests, for data of OR and its 95% CI, as in Tables 7–8, we first take the 
logarithm of the OR to get log(OR) and then use log(U/L)/3.92 to get the standard error (square root of 
vi) for each individual study, where U and L are the upper and lower limits of the 95% CI for OR. The 
above estimates of log(OR) and vi  are appropriate as the 95% CI of the odds ratio is usually calculated 
from ( , )( )− . ( )+ .� �� �

e eOR se OR selog 1 96 log 1 96 , namely, the 95% CI for the log(OR) is 
( ( ) − . , ( ) + . )� �� �OR se OR selog 1 96 log 1 96 , where se is the estimated standard error of ( )ORlog . For data 
set 1, B =  105 bootstraps were used, and the p-values were 0.025, 0.018, and 0.039 from the three pro-
posed goodness-of-fit tests AD, CvM, and SW, respectively. Those small p-values suggest that the random 
effect model may not be adequate for this data set. For data set 2, the p-values were 0.047, 0.037, and 
0.048 from the AD test, the CvM test, and the SW test, respectively. The goodness-of-fit of the random 
effect model in the meta-analysis was also rejected at significance level 0.05 by all of the three proposed 
tests.

Discussion
Meta-analysis is an important and useful tool for combining information from related studies. However, 
blindly using the tool may result in misleading results. Model checking is a critical step and should not 
be ignored. The goodness-of-fit tests proposed in this paper provide useful tool to check model adequacy 
in meta-analysis.

In practice, the Cochran’s test for homogeneity is usually performed in meta-analysis to see whether 
or not the fixed effect model fits the data. In general, if the hypothesis of homogeneity is rejected, the 
assumption of the fixed effect model is questionable. As a result, the random effect model is then usually 
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used. However, little has been found in the literature about the adequacy of the random effect model in 
meta-analysis. Our proposed goodness-of-fit tests fill the gap.

It should be pointed out that the Cochran’s test for homogeneity was not a formally goodness-of-fit test 
for the fixed effect model, though in many situations rejecting the hypothesis of homogeneity indicates 
the inadequacy of the fixed effect model. This is because the Cochran’s test assumes individual effects are 
from normal distributions. When the sample size for each individual study is large, this assumption may 
be valid. However, when sample sizes are small for some studies, the effects from those studies may not 
follow the normal distribution. Therefore, it is possible that in a meta-analysis the Cochran’s test does 
not reject the homogeneity assumption, but the goodness-of-fit tests indicate the lack of fit for both fixed 
effect and random effect models.

In a meta-analysis, if there is evidence of lack of fit for the random effect model, which includes fixed 
effect model as a special case, what should we do next? Viechtbauer agued that even if the homogeneity 
assumption was rejected, it is still valid to use weighted or unweighted mean to estimate the overall effect 
for the K studies1. In addition, many methods based on combining p-values can be used as well in this 
situation24–27.

Lastly, the proposed tests can be easily extended to check the normality assumption of the random 
effects in generalized linear mixed models. Furthermore, the proposed tests can also be used to check 
the random effect assumption in the meta-regression analysis, which is a special case of the generalized 
linear mixed model and extends the random effect model (1) by adding some fixed effects of study-level 
covariates.
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