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In mixed linear models, it is frequently of interest to test hypotheses on the variance compo-
nents. F test and likelihood ratio test are commonly used for such purposes. Current likelihood
ratio tests available in literature are based on limiting distribution theory. With the devel-
opment of finite sample distribution theory, it becomes possible to derive the exact test for
likelihood ratio statistic. In this paper, we consider the problem of testing null hypotheses on
the variance component in a one way balanced random effects model. We use the exact test for
the likelihood ratio statistic and compare the performance of F test and likelihood ratio test.
Simulations provide strong support of the equivalence between these two tests. Furthermore,
we prove the equivalence between these two tests mathematically.
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1. Introduction

This paper assumes a one way random effects model

yij = µ + αi + εij , (1)

where i = 1, . . . ,m; j = 1, . . . , k. µ is the fixed unknown intercept, α =
(α1, α2, . . . , αm)′ is the random effect and ε = (ε11, ε12, . . . , εmk)′ is the error term.
Assume α and ε are normally and independently distributed with mean 0 and
variances σ2

αIm, σ2Imk. A standard test of the variance component σ2
α is as the

following:

H0 : σ2
α = 0 v.s Ha : σ2

α > 0. (2)

F test is commonly used for this situation because, in this case, F test is a
uniformly most powerful unbiased test. On the other hand, likelihood ratio test
is a well known and widely used statistical test. One problem of test (2) is that
zero is at the boundary of the parameter space, so the limiting distribution of
the likelihood ratio statistic is not χ2. Hartly and Rao [1] stated without giving
a proof that the asymptotic distribution of −2logL is a central χ2. Other papers
related to asymptotic distribution of likelihood ratio statistic include Stram and
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Lee [2], Shephard and Harvey [3] and Stern and Welsh [4]. χ2 mixture [2] is another
way to approximate the distribution of likelihood ratio statistic and it works well
when the number of independent groups is large. There was another test called
locally optimal test proposed by Westfall [5, 6], which followed papers by Harville
and Fenech [7] and Seely and El-Bassinouni [8]. Westfall [5] compared the locally
optimal test to the F test for unbalanced designs. However, “the literature on
likelihood ratio tests in the context of linear mixed models is much less extensive”
(Jiang [9, pg. 55]). Recently, Crainiceanu and Ruppert [10] derived finite sample
distribution of likelihood ratio statistics in linear mixed models, which makes it
possible to derive the exact test for likelihood ratio statistics. In this article, we
consider the standard test (2) in a one way balanced random effects model. We
discover that F test and likelihood ratio test are equivalent by simulation studies.
Furthermore, we prove the equivalence between the two tests in theory.

This paper is organized as follows. In section 2, we review F test and likelihood
ratio test. In section 3, we report our simulation results. Finally, a proof of the
equivalence between the two tests is given in section 4.

2. Background

We first introduce some notation. Define ȳ.. =
∑m

i=1

∑k
j=1 yij/mk, ȳi. =∑k

j=1 yij/k for each i, SSE =
∑m

i=1

∑k
j=1(yij − ȳi.)2/(k − 1)m, SSB =

k
∑m

i=1(ȳi. − ȳ..)2, MSB = SSB/(m− 1) and MSE = SSE/(m(k − 1)).
For model (1), the ratio of MSB/(σ2 + kσ2

α) to MSE/σ2 has an F distribution
with degrees of freedom (m-1,m(k-1)). Under H0 in (2), MSB/MSE has an F
distribution with degrees of freedom (m-1,m(k-1)).

Before we discuss the likelihood ratio test, we first write model (1) in matrix
form,

Y = Xµ + Zα + ε, (3)

where X is simply an mk×1 vector of 1s, Z is an mk×m matrix with every column
containing only 0s with exception of a k dimensional vector of 1s corresponding to
the level parameter, Y is the response vector and ε is the random error vector.

Twice the log-likelihood function of (3), we have

2 log{L(µ, σ2
α, σ2)} = − log(σ2)− log |V| − (Y −Xµ)TV−1(Y −Xµ)

σ2
,

where V = Imk + λZZT , λ = σ2
α/σ2 and the likelihood ratio statistic is defined as

LRT = 2 sup
Ha

{L(µ, σ2
α, σ2)} − 2 sup

H0

{L(µ, σ2
α, σ2)}. (4)

The standard maximum likelihood estimators are as follows

µ̂ = (XTV−1X)−1XTV−1Y,

and

σ̂2 =
(Y −Xµ̂)TV−1(Y −Xµ̂)

mk
.
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Under the null hypothesis, we obtain the likelihood estimators as follows

µ̂ = ȳ..,

and

σ̂2
0 =

1
km

m∑

i=1

k∑

j=1

(yij − ȳ..)2.

Under the alternative hypothesis, we obtain the likelihood estimators as follows

µ̂ = ȳ..,

and

σ̂2 =
1

(k − 1)m

m∑

i=1

k∑

j=1

(yij − ȳi.)2.

σ̂2
α =





1
k (

k
mP

i=1
(ȳi.−ȳ..)2

m − σ̂2), if σ̂2 ≤
k

mP
i=1

(ȳi.−ȳ..)2

m ,
0, otherwise .

(5)

3. Simulations

We first introduce the result from Crainiceanu and Ruppert [10], which we use in
our simulation study. Crainiceanu and Ruppert [10] developed a method to get
finite sample distributions of likelihood ratio statistics, which follows that

LRT
D= kmlog(Xm−1 + X(k−1)m)

− inf
d≥0

{
kmlog

(
Xm−1

1 + d
+ X(k−1)m

)
+ mlog(1 + d)

}
, (6)

where notation D= denotes equivalence in distribution and Xm−1 and X(k−1)m are
independent random variables with distribution χ2

m−1 and χ2
(k−1)m.

In this section, we perform simulation study to investigate the two tests. First,
we compare the percentages of samples for which the test statistics exceed the
critical value to the nominal level. Then we calculate power of the two tests. The
following are the simulation details:

(1) Calculate critical values for both tests. We use (6) to generate finite sample
distribution of likelihood ratio statistic and to find corresponding critical
values. For each setting, we use a different seed and generate 100000 sam-
ples from (6). Critical value is the 100(1 − γ)% percentile, where γ is the
significant level of test. Critical value for F test is Fγ [m − 1,m(k − 1)].
Results are listed in Table (1).

(2) Compare to the nominal levels. The following model is used to generate
samples:

yij = 0.5 + αi + εij , (7)
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Table 1. Critical values for the two tests

significance k m
level (γ) tests 2 10 50

0.01 5 F test 11.25862 2.887560 1.634977
LRT test 3.062403 4.361615 4.91984

10 F test 8.28542 2.610879 1.576229
LRT test 2.590879 4.137277 4.707984

20 F test 7.352545 2.501878 1.551395
LRT test 2.444884 4.024391 4.670615

0.05 5 F test 5.317655 2.124029 1.418051
LRT test 0.9052984 1.877785 2.335454

10 F test 4.413873 1.985595 1.382671
LRT test 0.6955273 1.764155 2.228158

20 F test 4.098172 1.929425 1.367567
LRT test 0.6283923 1.705018 2.225503

0.1 5 F test 3.457919 1.792902 1.312488
LRT test 0.2665952 0.990356 1.362770

10 F test 3.006977 1.702053 1.286975
LRT test 0.1779033 0.9079695 1.27152

20 F test 2.842442 1.664704 1.276034
LRT test 0.1358003 0.8746464 1.274283

where i = 1, . . . ,m; j = 1, . . . , k. α and ε are normally and independently
distributed with mean 0 and variance σ2

αIm, σ2Imk respectively.
For each setting, we use a different seed and generate 100000 samples

from model (7) with σ2
α = 0 and σ2 = 1. For each sample, we apply F test

and likelihood ratio test (LRT) and the percentages of samples for which
the test statistics exceed the critical value are reported in Table (2). Both
tests give almost the same results and work very well as we can see that
the percentages of samples for which the test statistics exceed the critical
value are very close to the nominal level.

(3) Calculate power of the tests. We generate 100000 samples from model (7)
with σ2

α = 0.09, 1, 9 and σ2 = 1 for each setting using a different seed. The
results are reported in Table (3), Table (4) and Table (5). We can see that
the two tests almost have the same power. Equation (8) can also be used
to calculate power.

P

(
MSB

MSE
> Fγ |σ2

α > 0
)

= P

(
MSB/(σ2 + kσ2

α)
MSE/σ2

>
σ2

σ2 + kσ2
α

Fγ

)
, (8)

where γ is the significance level, Fγ [m− 1, m(k − 1)] is the critical value.
For example, let m = 2, k = 5, γ = 0.01, λ = 0.09, we have

σ2Fγ/(σ2 + kσ2
α) = 7.764566 and power of the test from (8) is 0.02368,

which is close to the empirical power reported in Table (3).
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Table 2. Tests Comparison (the numbers in the table are the percentages of samples for which the test statistics

exceed the critical value)

significance k m
level (γ) tests 2 10 50

0.01 5 F test 0.01015 0.01026 0.01009
LRT test 0.01034 0.01006 0.00973

10 F test 0.00958 0.00977 0.01013
LRT test 0.00978 0.0096 0.01061

20 F test 0.00989 0.01041 0.00945
LRT test 0.00970 0.01041 0.00992

0.05 5 F test 0.05028 0.04888 0.05037
LRT test 0.05049 0.04959 0.04943

10 F test 0.05022 0.05015 0.05001
LRT test 0.05025 0.05038 0.05107

20 F test 0.04938 0.0496 0.05036
LRT test 0.04840 0.05003 0.05039

0.1 5 F test 0.09926 0.10016 0.10066
LRT test 0.09921 0.10123 0.09809

10 F test 0.10153 0.09906 0.10078
LRT test 0.0996 0.10006 0.10221

20 F test 0.10089 0.10019 0.10003
LRT test 0.09994 0.10062 0.0998

Table 3. Power of the tests λ = 0.09

significance k m
level (γ) tests 2 10 50

0.01 5 F test 0.02286 0.06682 0.27836
LRT test 0.02332 0.06565 0.27426

10 F test 0.05208 0.21231 0.78583
LRT test 0.05301 0.21117 0.78968

20 F test 0.11299 0.53116 0.99473
LRT test 0.11186 0.53112 0.99490

0.05 5 F test 0.09213 0.19207 0.52209
LRT test 0.09244 0.19354 0.51860

10 F test 0.14611 0.41039 0.91525
LRT test 0.14613 0.41108 0.91625

20 F test 0.23492 0.72211 0.99865
LRT test 0.23280 0.72282 0.99865

0.1 5 F test 0.16075 0.30051 0.65041
LRT test 0.16056 0.30251 0.64618

10 F test 0.22725 0.53221 0.95468
LRT test 0.22403 0.53373 0.95526

20 F test 0.31735 0.79945 0.99968
LRT test 0.31589 0.79985 0.99966

4. Proof of the Equivalence

Theorem 4.1 : For model (1), the likelihood ratio test statistic (4) is a one to
one function of MSB/MSE. Hence Likelihood ratio test is equivalent to F test.

Proof : We first prove that the likelihood ratio statistic is a one to one function
of F statistic by two cases: σ̂2

α > 0 and σ̂2
α = 0.
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Table 4. Power of the tests λ = 1

significance k m
level (γ) tests 2 10 50

0.01 5 F test 0.20632 0.87851 1.00000
LRT test 0.20821 0.87713 1.00000

10 F test 0.39500 0.98768 1.00000
LRT test 0.39680 0.98756 1.00000

20 F test 0.55872 0.99917 1.00000
LRT test 0.55755 0.99917 1.00000

0.05 5 F test 0.37424 0.94984 1.00000
LRT test 0.37472 0.95021 1.00000

10 F test 0.53460 0.99604 1.00000
LRT test 0.53461 0.99605 1.00000

20 F test 0.65973 0.99965 1.00000
LRT test 0.65829 0.99965 1.00000

0.1 5 F test 0.47081 0.97072 1.00000
LRT test 0.47068 0.97096 1.00000

10 F test 0.60843 0.99737 1.00000
LRT test 0.60605 0.99739 1.00000

20 F test 0.71258 0.99984 1.00000
LRT test 0.71187 0.99984 1.00000

Table 5. Power of the tests λ = 9

significance k m
level (γ) tests 2 10 50

0.01 5 F test 0.63433 0.99994 1.00000
LRT test 0.63573 0.99994 1.00000

10 F test 0.76535 1.00000 1.00000
LRT test2 0.76617 1.00000 1.00000

20 F test 0.84207 1.00000 1.00000
LRT test 0.84153 1.00000 1.00000

0.05 5 F test 0.74275 0.99998 1.00000
LRT test 0.74298 0.99998 1.00000

10 F test 0.82701 1.00000 1.00000
LRT test 0.82702 1.00000 1.00000

20 F test 0.88116 1.00000 1.00000
LRT test 0.88054 1.00000 1.00000

0.1 5 F test 0.79241 0.99999 1.00000
LRT test 0.79236 0.99999 1.00000

10 F test 0.85743 1.00000 1.00000
LRT test 0.85654 1.00000 1.00000

20 F test 0.90209 1.00000 1.00000
LRT test 0.90180 1.00000 1.00000
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Case 1: σ̂2
α > 0

Since σ̂2 = MSE, σ̂2
α = 1

k

(
m−1

m MSB −MSE
)

and SSE + SSB =∑m
i=1

∑k
j=1(yij − ȳ..)2,

LRT = −(mk −m) log(σ̂2)−
m∑

i=1

log(σ̂2 + kσ̂2
α)− 1

σ̂2

m∑

i=1

k∑

j=1

(yij − µ̂)2

= −(mk −m) log(σ̂2)−m log(σ̂2 + kσ̂2
α)− mkσ̂2

0

σ̂2

+
σ̂2

α

σ̂2

(
k2

σ̂2 + kσ̂2
α

) m∑

i=1

(ȳi. − ȳ..)2 + mk log(σ̂2
0) + mk

= −(mk −m) log
(

SSE

(k − 1)m

)
−m log

(
SSB

m

)
− (k − 1)m(SSE + SSB)

SSE

+
m2(k − 1)

(
SSB
m − SSE

(k−1)m

)

SSE
+ mk log

(
1

mk
(SSE + SSB)

)
+ mk

= c + mk log(SSE + SSB)−mk log(SSE) + m log(SSE)−m log(SSB)

= c + m

[
log

(
1 + c∗

MSB

MSE

)k

− log
(

c∗
MSB

MSE

)]

= c−m log(c∗) + m log

((
1 + c∗MSB

MSE

)k

MSB
MSE

)
(9)

where c and c∗ = (m− 1)/((k − 1)m) are constants. Since σ̂2
α > 0, we have

MSB/MSE > m/(m− 1). If x > m/(m − 1) and k ≥ 2, derivative of function
f(x) = (1 + c∗x)k/x is positive . So LRT is a strictly increasing function.

Case 2: σ̂2
α = 0

In this case,

LRT = −(mk −m) log(σ̂2)−
m∑

i=1

log(σ̂2)− 1
σ̂2

m∑

i=1

k∑

j=1

(yij − µ̂)2

+ mk log(σ̂2
0) +

1
σ̂2

0

m∑

i=1

k∑

j=1

(yij − µ̂)2

= −(mk −m) log
(

SSE

(k − 1)m

)
−m log

(
SSE

m(k − 1)

)
− (k − 1)m(SSE + SSB)

SSE

+ mk log
(

1
mk

(SSE + SSB)
)

+ mk

= c′ − (k − 1)m
SSB

SSE
+ mk log

(
1 +

SSB

SSE

)

= c′ − (m− 1)
MSB

MSE
+ mk log

(
1 + c∗

MSB

MSE

)

where c′ and c∗ = (m− 1)/((k − 1)m) are constants. Since σ̂2
α = 0, we have

MSB/MSE ≤ m/(m− 1). If x ≤ m/(m− 1) and m, k ≥ 2, derivative of function
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f(x) = −(m−1)x+mk log (1 + c∗x) is positive. So LRT in case 2 is also a strictly
increasing function.

From the above proof, we conclude that the likelihood ratio statistic is a one-to-
one function of F statistic MSB/MSE under both cases σ̂2

α > 0 and σ̂2
α = 0.

The proof of equivalence can be obtained by proving that the two tests have the
same results of rejection or acceptance. Consider case 1: σ̂2

α > 0. Given an arbitrary
significance level γ, let Fγ be the critical value of F test and Lγ be the critical value
of the likelihood ratio test. Let LRT = g(MSB/MSE), where g represents the
one to one continuous increasing function. Clearly Lγ = g(Fγ) and the statement
MSB/MSE > Fγ is equivalent to the statement g(MSB/MSE) > g(Fγ) i.e.,
LRT > Lγ . Proof of equivalence in case 2: σ̂2

α = 0 can be obtained similarly. ¤
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