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Adjusted Confidence Bands
in Nonparametric Regression

GUOYI ZHANG1 AND YAN LU2
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Tempe, Arizona, USA
2Department of Mathematics and Statistics, University of New Mexico,
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Suppose we have ��xi� yi�� i = 1� 2� � � � � n, a sequence of independent observations.
We wish to find approximate 1− � simultaneous confidence bands for the regression
curve. Many previous confidence bands in the literature have practical difficulties.
In this article, the local linear smoother is used to estimate the regression curve.
The bias of the estimator is considered. Different methods of constructing confidence
bands are discussed. Finally, a possible method incorporating logistic regression
in an innovative way is proposed to construct the bands for random designs.
Simulations are used to study the performance or properties of the methods. The
procedure for constructing confidence bands is entirely data-driven. The advantage
of the proposed method is that it is simple to use and can be applied to random
designs. It can be considered as a practically useful and efficient method.

Keywords Confidence bands; Local linear smoother; Nonparametric regression.

Mathematics Subject Classification 62G15.

1. Introduction

Nonparametric regressionmodels have received considerable attention in recent years.
Many of the major issues such as bandwidth selection, kernel functions, minimax
efficiencies, and best uniform convergence rates are well studied. Confidence bands
in nonparametric regression have been studied for a long time. Unfortunately,
current methods of constructing confidence bands in nonparametric regression still
have some practical difficulties. In this article, we will develop a new method to
construct confidence bands for random designs in nonparametric regression.

Consider the general nonparametric regression model

yi = m�xi�+ ��xi�	i� i = 1� 2� � � � � n� (1)
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Adjusted Confidence Bands in Nonparametric Regression 107

where �	i� is a sequence of independent, identically distributed, random variables
with E�	i� = 0 and E�	2

i � = 1
 m�·� is an unknown smooth regression curve;
��xi� yi�� is a sequence of observations; and xi has a density function f�·�. In
this article, we assume ��·� is a constant function. In general, it could be any
unknown smooth function. Without loss of generality, we assume that xi ∈ �0� 1�,
i= 1� 2� � � � � n.

Given � ∈ �0� 1�, to construct a confidence band, we need an estimator m̂�x� for
m�x� and a bound l�, such that

P��m̂�x�−m�x�� ≤ l� for all x� ≥ 1− �� (2)

Then, a 100�1− �)% confidence band can be constructed as

m̂�x�± l��

Bickel and Rosenblatt (1973) studied the limiting distribution of the maximum
absolute deviation for kernel density estimators. Härdle (1989) used this approach to
develop similar results for kernel regression. These confidence bands require the bias
of m̂ to be negligible relative to its standard error. However, most of the common
data-driven bandwidth selectors minimize mean squared error. Consequently, the
selected bandwidth always balances the bias and the variance. Hence, it is unwise to
hope the bias can be ignored automatically.

There have been two different directions to deal with the bias in the literature.
The first direction is to subtract an estimator of the bias from the estimator and use
the result as a pivotal quantity for constructing confidence bands. In other words,
they try to recenter the naive bands that are often used in this setting. A bias-
corrected confidence band was first proposed by Eubank and Speckman (1993).
Their confidence band is for the fixed uniform designs. Extensions of the bias-
corrected confidence band to random and non uniform designs were developed by
Xia (1998). A major disadvantage of a bias-corrected confidence band is that it
involves estimating the second derivative of the regression function, which is not
stable. When we construct our bias-corrected bands, we are really estimating m
by m̂-bîas, which should have a bigger variance than that of m̂. “Subtracting the
estimator of the bias will generally increase variance more than it reduces bias”
(Sun and Loader, 1994); we can find similar reports from Härdle and Marron
(1991). Fan and Zhang (2000) derived a bias-corrected confidence band but used a
smaller bandwidth, 1

2 ĥ, in their simulation and application, claiming that “with this
small bandwidth, we ignore the bias in the construction of simultaneous confidence
bands.” However, if the bandwidth is too small, the estimator of the regression
function will have a very large variance and be far from the “optimal” estimator.
The second direction is to use some techniques to reduce the bias and then ignore
the bias instead of estimating the bias. For example, Sun and Loader (1994)
suggested using the tricube weight function and fitting local quadratic polynomials.
Claeskens and Keilegom (2003) suggested under smoothing to reduce the bias.
However, it is well known that the asymptotic distribution of sup�m̂−m� is very
sensitive. Consequently, it is doubtful that the bias can be ignored for general cases
after using some techniques to reduce the bias. Even relatively small bias may still
have a serious impact on the coverage.
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108 Zhang and Lu

Despite the difficulties involved, the goal of this research is to find a
relatively simple and efficient solution to the confidence band problem. Eubank and
Speckman (1993) and Xia (1998) attempted to recenter the bands by the correction
of the bias. The confidence band takes the form: m̂�x�− bîas± l�. An alternative
approach is to expand the bands to compensate for the bias. The confidence
band takes the form: m̂�x�± c ∗ l�. We use the second approach to construct our
proposed confidence band.

This article is organized as follows. We introduce our adjusted confidence band
in Sec. 2. The simulation study is reported in Sec. 3. Finally, we give a summary in
Sec. 4.

2. Adjusted Confidence Bands

The confidence bands using the approach proposed by Bickel and Rosenblatt (1973)
are widely accepted because these confidence bands have a limiting distribution that
does not involve the unknown mean function in theory. Eubank and Speckman
(1993) and Xia (1998) estimated the bias and recentered the confidence bands to
make them more possible to be used in practice. However, from their article we can
see that the convergence rate is very slow. One difficulty is that, in practice, we have
finite samples, such as n = 200. (This is considered as a large sample size in general
regression problems.) Since the convergence rate is very slow, this sample size is
not large enough to approximate the population quantities by sample estimators.
Even with some modifications of the estimators of the bounds l� (as we can see in
Eubank and Speckman, 1993, and Xia, 1998, they modified the asymptotic variances
of the estimator of m�x� for the finite sample), the coverage is still not satisfied.
We did simulations using the methods proposed by Xia (1998) with bias correction
and also without bias correction. The simulation results are available in Tables 1
and 2. (Similar results can be also found from Claeskens and Keilegom, 2003.) Xia’s
method does not work well when using function m�x� = x ∗ �1− x� and the fixed
uniform design. The coverage is not improved at all. From Table 1, when � = 0�05,
with nominal coverage = 90%, coverage for n = 200 is only 0.766. This is even lower
than the coverage 0.814 (see Table 2) using the same setting but without the bias
correction term.

Table 1
With the bias correction term (we use function m�x� = x ∗ �1− x� and the fixed

uniform design in this simulation)

Coverage for the following n:
Nominal

� coverage (%) Method 50 100 200

0.05 90 xia 0.804 0.830 0.766
95 xia 0.874 0.888 0.870

0.1 90 xia 0.774 0.782 0.730
95 xia 0.898 0.880 0.846
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Adjusted Confidence Bands in Nonparametric Regression 109

Table 2
Without the bias correction term (we use function m�x� = x ∗ �1− x� and the fixed

uniform design in this simulation)

Coverage for the following n:
Nominal

� coverage (%) Method 50 100 200

0.05 90 No bias 0.760 0.790 0.814
95 No bias 0.848 0.892 0.878

0.1 90 No bias 0.774 0.782 0.818
95 No bias 0.858 0.864 0.898

Besides recentering the bands by the correction of the bias, another approach is
to expand the bands to account for the bias. So, the confidence bands take the form

m̂�x�± c ∗ l��x��

where

l��x� =
�̂�x�V̂(∑n

t=1 wt�x�
)1/4



√
−2 log�ĥ�+ 1√

−2 log�ĥ�
�A− X��


 �

A = log
{

1
2


(∫
K′�u�2du

/∫
K�u�2du

)1/2}
�

X� = log
{− log�1− ��

2

}
�

wt�x� = K

(
xt − x

h

)(
s2 −

xt − x

h
s1

)
� (3)

sl =
n∑

t=1

K

(
xt − x

h

)(
xt − x

h

)l

l = 1� 2�

m̂�x� =
n∑

t=1

wt�x�yt
/ n∑

t=1

wt�x�

V =
√∫

K�u�2du�

K�·� is a kernel function, ĥ is the selected bandwidth, �̂�x� is the consistent estimator
of ��x�, and

c = inf
b∈R

{
P��m̂�x�−m�x�� ≤ b ∗ l� for all x� ≥ 1− �

}
� (4)

We call c an adjustment value. The advantage of our suggested confidence band is
that it is simple to use and can be applied to random designs.
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110 Zhang and Lu

Proposition 2.1. The adjustment value is a monotone decreasing function of sample
size n and the limit of the adjustment value is 1.

Proof. From (3), the bound l� has two parts. The first part, �̂�x�V̂ /
(∑n

t=1 wt�x�
)1/4

,

is the estimated standard deviation of m̂. The second part,
{√

−2 log�ĥ�+
1√

−2 log�ĥ�

}
�A− X��, is a decreasing function of the bandwidth. As the sample size

increases, the selected bandwidth decreases. The bias and the first part of the bound
decay at the same rate: namely, n− 2

5 . The second part of the bound increases as the
sample size increases. Hence, the bias decays faster than the bound. We only need
a smaller c to compensate for the bias when we use a bigger sample size. In other
words, the adjustment value c is a monotone decreasing function of the sample
size n. It is also clear from (3) that l�1/l�2 → 1 as n → 	 for any fixed 0 < �1� �2 < 1.
The effect of � on the width of the band l� is of second order. Consequently, using
the definition from (4), the limit of the adjustment value is 1.

The remaining problem is to find an appropriate estimator of c. We did pilot
simulation to find some properties of the adjustment value c. The lower bound of c
is obviously 1. By the fact that the absolute value of the bias is half of the standard
deviation when we use the optimal bandwidth (see Prewitt and Lohr, 2006), we can
use 1

2 l� to compensate for the bias conservatively so that 3
2 l� is a possible upper

bound for our confidence band. We did simulation for the fixed uniform design
using function m�x� = exp�−16 ∗ �x − 0�5�2� and c = 1�5. The simulation result is
found in Table 3. We can see that the coverage is always greater than the nominal
level. This suggests that 1.5 is a possible upper bound.

Given true regression function m�x�, sample size n, and �, using the definition of
(4), we can find c. In practice, the true regression function is generally not available.
So, we define c∗ as the random variable which is corresponding to the estimator of
the regression function m̂�x�, sample size n, and �̂ from the given data. Based on
our experience, c∗ is very close to c. The basic idea is that we can generate random
samples using the estimator of the regression function, sample size and �̂. Then, set
a grid for c from 1 to 1.5 and do simulations for each value. Using definition (4),
we can find the estimator of c∗, i.e., the value for which the simulation coverage
is closest and greater than or equal to the nominal coverage. Unfortunately, this

Table 3
The fixed uniform design, function m�x� = exp�−16 ∗ �x − 0�5�2� (The confidence
band takes the form m̂�x�± c ∗ l��x�. We can see that the coverage is always

greater than the nominal level. This suggests that 1.5 is a possible upper bound)

Coverage for the following n:
Nominal

� coverage (%) Method 50 100 200

0.05 90 c = 1�5 0.974 0.986 0.994
95 c = 1�5 0.992 0.996 0.996

0.1 90 c = 1�5 0.988 0.968 0.992
95 c = 1�5 0.990 0.998 0.998
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Adjusted Confidence Bands in Nonparametric Regression 111

process is not efficient at all. Hence, we develop a process to estimate the value of
c by incorporating logistic regression in an innovative way.

We describe the process, process 1, as follows. Given a data set, we estimate
m�x� and �, say m̂� �̂. We then generate 1,000 samples (for each sample, we have
n independent pairs of observations) from m̂� �̂, and the x’s. Between the lower
bound 1 and upper bound 1.5 of c, we set di �i = 1� 2� � � � � 1�000� as equally spaced
points. For different samples, we try different dt’s. If the confidence band contains
the estimator of the regression function, set wi = 1 and otherwise take wi to be
zero. The process will generate a sequence of response wi �i = 1� 2� � � � � 1�000� which
are binary variables with a Bernoulli distribution. We use the logistic regression
model to fit the data, ��di� wi�� i = 1� 2� � � � � 1�000 and find the value corresponding
to the probability 100�1− ��% using 
�x� = e�0+�1x/�1+ e�0+�1x�. This value is our
estimator of c.

3. Simulation

In this section we use simulations to study the performance of the method. We use
the following regression function that has been used in Eubank and Speckman
(1993) and Xia (1998),

m�x� = exp�−16 ∗ �x − 0�5�2��

where 0 ≤ x ≤ 1. We use the random normal design, xi ∼ N�0�5� 1�, �xi� is a
sequence of independent, identically distributed, random variables with E�xi� = 0�5
and E��xi − 0�5�2� = 1. We tried two sample sizes n = 100� 200. � is chosen to be
0.05 and 0.1. � is set to be 0.1 and 0.05. The confidence bands are investigated for
the different settings combining sample size, � and �. For all the data analyzed
below, we use the Epanechnikov kernel for the local linear smoother of m�x�. Cross-
validation method is used to select the bandwidth and GSJS method (proposed by
Gasser et al., 1986, and thereafter referred to as the GSJS estimator) is used to
estimate the �. We conduct 5,000 replications at each combination of function m,
error noise �, and sample size n, using a different seed for every case. The grid of
100 evenly spaced points in the interval �0� 1� is used.

The preferred simulation should generate 5,000 samples and for each sample we
use process 1 to estimate c and then use this ĉ to construct the confidence band
and have a success or failure result. However, it takes two hours to estimate c using
process 1. Consequently, we need 10,000 hours. Practically speaking, it is impossible

Table 4
The estimation of c (by logistic regression model)

Coverage for the following n:
Nominal

� coverage (%) 100 200

0.05 90 1.339188 1.286716
95 1.385901 1.286741

0.1 90 1.283638 1.258963
95 1.305620 1.247548
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112 Zhang and Lu

Table 5
Nonuniform random design, function

m�x� = exp�−16 ∗ �x − 0�5�2�, using ĉ from Table 4

Coverage for the following n:
Nominal

� coverage (%) 100 200

0.05 90 0.8866 0.9182
95 0.9520 0.9556

0.1 90 0.8980 0.8992
95 0.9530 0.9514

to carry out this simulation. Notice that when the sample size is bigger than 100,
m̂�x� and �̂ are very close to the true function and �. The c value for estimated
settings using m̂�x� and �̂ (we defined it c∗ previously) should be very close to the
c value for the true settings. Hence, we did following simulations to investigate this
method. We generated 1,000 samples for each experimental setting and estimated c
using process 1. We call this estimator ĉ. The results were shown in Table 4. Then
we did 5,000 simulations for each experimental setting using corresponding ĉ value.
The results were shown in Table 5. The empirical coverage are very close to nominal
level. Hence, we believe logistic regression model is appropriate to be used here.
The simulation we did shows that in practice ĉ∗ from the logistic regression model
should be very close to c∗, which suggest ĉ∗ could be a good estimator of c when c∗

is very close to c.

4. Concluding Remarks

In this article, we have proposed a new method to construct simultaneous
confidence bands for the random designs in nonparametric regression. The local
linear smoother is used to estimate the regression curve. Instead of subtracting
the estimator of the bias, we expand the confidence bands by multiplying by an
adjustment value c to account for the bias of the smoother. The confidence bands
take the form m̂�x�± c ∗ l��x�. Logistic regression is used in an innovative way to
estimate the bias adjustment c. The resulting procedure for constructing confidence
bands is entirely data-driven. The advantage of our method is that it is simple to use
and can be applied to all the cases, such as the uniform design, nonuniform random
design, etc. Simulations show that the method we proposed provides a promising
way to construct confidence bands in nonparametric regression.
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