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The Shewhart R control chart and s control chart are widely used to monitor shifts in the process spread.
One fact is that the distributions of the range and sample standard deviation are highly skewed. Therefore,
the R chart and s chart neither provide an in-control average run length (ARL) of approximately 370 nor
guarantee the desired type I error of 0.0027. Another disadvantage of these two charts is their failure in
detecting an improvement in the process variability. In order to overcome these shortcomings, we propose
the improved R chart (IRC) and s chart (ISC) with accurate approximation of the control limits by using
cumulative distribution functions of the sample range and standard deviation. Simulation studies show
that the IRC and ISC perform very well. We also compare the type II error risks and ARLs of the IRC and
ISC and found that the s chart is generally more efficient than the R chart. Examples are given to illustrate
the use of the developed charts.

Keywords: R chart; s chart; average run length; cumulative distribution function; process spread

1. Introduction

The Shewhart R control chart (R chart) and s control chart (s chart) [23] are widely used in
quality control. The range statistic R; is defined as the difference between the largest observation
and the smallest observation within each subgroup i. Based on the 3¢ approach, the control limits
of R chart is ug £ 30k [25], where g is the mean and oy is the standard deviation of R;. The
retrospective upper control limit UCLg and lower control limit LCL of R chart can be derived as

UCLg = D4R and LCLg = D;R, (1)

where D3 and D, are constants depending on the subgroup size n, and R is an estimate of jiz.

A viable competitor for the R chart is the s chart, which uses the average sample standard
deviation to estimate process variability o. The s chart tends to detect changes in the process
spread quicker but with computational complexity. The retrospective control limits for the s
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chart based on u,; & 30y are
UCL; = B4s and LCL, = B33, 2)

where B, and B; are constants depending on the subgroup size 7, and 5 is an estimate of /.
Both R chart and s chart are based on the assumption that the underlying distribution of the
quality characteristic is approximately normal, while, the actual sampling distributions of range
R and standard deviation S have long tails on the right side. Even with a normally distributed
quality characteristic, the use of the 30 approach is not appropriate. As shown in [16], the con-
trol limits in Equation (1) produce a higher type I error size than that of the X chart. The R and
s charts could not provide an in-control average run length (ARL) of approximately 370 nor
guarantee the type I error size of 0.0027. When sample size is small, the LCLs of R and s charts
are truncated to 0 since the skewed distribution of R and § yield negative numbers for the LCLs.
Therefore, it is impossible to detect an improvement of the process. Table 1 gives the ARL pro-
files of R chart through simulation studies (refer to Section 3 for simulation settings). Table 1
shows that the in-control ARLs are all around 200, while the intended value is 370. The chance
of the two-sided R chart signaling below the LCL is nearly 0. To overcome these problems and to
deal with some special occasions, there has been a rich literature on the control charts. Khoo and
Lim [14] proposed an improved R chart (IRC) by using the density function to obtain the con-
trol limits based on a desired type I error size. Chan and Cui [10] proposed skewness correction
x-bar and R-charts for skewed distributions. Castagliola [8] and Tadikamalla and Popescu [24]
discussed improved methods for long-tailed symmetrical distributions of the quality characteris-
tics. Khoo [13] discussed the shortcomings of the conventional s chart and suggested a modified

Table 1. Two-sided and upper-sided R chart’s ARL profiles.

8 =0/op Upper-sided Two-sided Upper-sided Two-sided Upper-sided Two-sided

0.10 1.00 1.00
0.20 1.44 1.00
0.30 6.24 1.03
0.40 33.68 1.66
0.50 163.63 5.12
0.60 650.61 23.40
0.70 2392.34 121.53
0.80 5586.59 648.92
0.90 1282.05 1162.79
1.00 217.34 217.95 223.41 228.15 224.36 209.16
1.05 121.43 123.54 119.21 112.66 98.40 96.76
1.10 73.92 72.50 63.11 63.27 49.35 50.00
1.15 47.84 47.43 37.07 37.95 27.71 27.62
1.20 32.38 32.70 23.97 24.08 16.59 16.71
1.30 17.43 17.35 11.65 11.55 7.55 7.56
1.40 10.60 10.59 6.69 6.67 4.23 4.21
1.50 7.22 7.22 4.37 4.39 2.76 2.76
1.60 5.26 5.26 3.17 3.17 2.02 2.03
1.80 3.33 333 2.03 2.02 1.39 1.39
2.00 2.44 2.44 1.55 1.54 1.16 1.16

3.00 1.29 1.29 1.04 1.04 1.00 1.00
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s chart for the process variance. Rakitzis and Antzoulakos [17] studied one-sided adaptive s con-
trol charts for detecting increases or decreases in the process variation. He and Grigoryan [11]
and Ahmad et al. [6] discussed monitoring variability under double sampling scheme. Acosta-
Mejia and Pignatiello [5] proposed modified R charts for improved performance, and Lee [15]
extended ideas of adaptive control charts to the Shewhart R chart for improving the efficiency
in signaling increases in the variance. Control charts based on exponentially weighted moving
average and cumulative sums (CUSUMs) also gain a lot of attentions, such as [1-4,9,12]. Other
techniques are also used in control charts. Riaz and Saghir [19] discussed monitoring process
variability using Gini’s mean difference. For monitoring changes, Riaz [18] and Riaz and Saghir
[20] proposed Shewhart-type control charts based on inter-quartile range and average absolute
deviations taken from the median respectively. Schoonhoven ef al. [22] and Schoonhoven and
Does [21] also investigated robust control charts.

Most of the research in the literature are complicated methods which deal with some special
occasions. The R chart, s chart and the improved charts by Khoo and Lim [14] are relatively
simple and can be used by people with minimal quantitative backgrounds. These methods are
also robust tools, which has been successfully applied in various quality assurance situations.
Our proposed research is inspired by the work of Khoo and Lim [14]. One problem from Khoo
and Lim’s [14] approach is that the density function is obtained by means of the transformed data
Y, =F(X;),i=1,2,...,n, in which the cumulative distribution function (CDF) F(X;) needs to
be estimated. To avoid the bias introduced by estimating the parameters, we propose the IRC
and improved s chart (ISC) by using the CDF of S; and R; directly. The precise control limits are
derived and the constants needed to construct the control charts are reported.

The present paper is divided into six sections. In Section 2, we propose the IRC and ISC;
in Section 3, we use simulation studies to investigate the performance of the proposed control
charts. Section 4 gives the comparison between the proposed R chart and s chart. Section 5 gives
two examples. Finally, Section 6 gives a summary of the research.

2. Improved R chart and s chart
2.1 Improved R chart

Assume that there is a series of subgroups. Each of them consists a size n sample, say
X1,Xa,...,X,. Assume that X, X5, ..., X, are independent, identical and normally distributed
with mean pu and variance croz. Without loss of generality, consider n iid standard normal vari-
ables Zj,...,7Z,. Let U = minZ;, V = maxZ; and R =V — U. The joint density function of U
and V can be found from [7, p. 218] and is as follows:

nn—DeU)(V)(D (V) — DU 2, forV > U,
0, otherwise,

f(U,V)={

where ¢ is the probability density function (pdf) of Z; and @ is the CDF of Z;. By transformation,
the joint density function of U and R can be shown as follows:

n(n — Dp(U)d(U + R)(®U +R) — d(U))" 2, forR > 0,
0, otherwise.

gWU,R) = {

The marginal CDF of R can be derived as follows:

Hr(r) =PR <)

2// g(U,R)dU dR
0 J—oo
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=/ / n(n— DU (U +R)(®(U +R) — dU))">dRdU
—00 JO

= f ng(U)(®(U +R) — d(U))"' dU. 3)

o]

For a one-sided IRC, the upper control limit UCLgyy can be derived by solving the following
equation:

/Oo ngU)(@WU +r)— dU)"'dU =1 —«a, “)

o0

for r, say Dy, , where « is the type I error. The lower control limit LCLgy. can be derived by
solving

/oo ng(U)(@U +r) — dU))"'dU = a, §))

o]

for r, say D; . The upper-sided and lower-sided IRC’s limits are computed as
UCLR]U = DU*O' and LCLRIL = DL*U. (6)

For a two-sided IRC, the control limits UCLgr and LCLg;t can be obtained by Equations (4)
and (5), respectively, with the type I error in both equations replaced by «/2. The two-sided
IRC’s limits are

UCLRIT = D;O’ and LCLRIT = DTO, (7)

and the two-sided retrospective IRC’s limits are
UCLRIT = DXR and LCLR[T = D:R (8)

We use the R program to evaluate the integrals in Equations (4) and (5) and report the constants
DY — Dj, D{j and Df corresponding to the type I error sizes of 0.0027 and 0.005 in Tables 2 and 3,
respectively.

2.2 Improved s chart

Consider next estimating o based on the sample variance of a process S = X — X)?/
(n—1). The standard probability theory [7] says that (n — 1)S?/o? ~ x?_|. Let W be a x>
distribution with n — 1 degrees of freedom, i.e. W ~ xf_l. S has the same distribution as
o«/W/«/n — 1. The CDF of § for the standard normal variables Z,,Z,,...,Z, is

Hg(s) = P(S <)

1
=P <mﬁ < s)
=P{W < (n—1)s%}
=G, {(n—1s7),

where G(-) is the CDF of the x? distribution with n — 1 degrees of freedom.
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Table 2. Values of LCL and UCL constants, and D} — D} for the IRC.

n D} D} D D}, D} D;

2 0.0024 45477 00047 42502 00021  4.0316
3 0.0701 49642 00990 46858 00414 29322
4 02207 52132 02784 49453 01072 25319
5 03967 53906 04735 51298 01706 23175
6 05692 55280 06576 52725 02246  2.1815
7 07290 56398 08246 53885 02696  2.0857
8 0.8746 57340 09746 54861 03072 2014
9 10066 58152 11094 55702 03389  1.9580
10 11265 58863 12311 56439 03660 19124
11 12359 59499 13414 57095 03895  1.8752
12 13361 60070 14422 57686 04101  1.8438
13 14283 60589 15346 58223 04281  18I62
14 15135 61065 16199 58714 04442 17923
15 15926 61504 16988 59167 04587 17714
20 19182 63293 20228 61013 05136  1.6946
25 21645 64641 22669 62401 05506  1.6444

Notes: D} denotes the one-sided LCL constant and Dj; denotes the one-sided UCL constant.
The type I error risk is 0.0027 (ARLy = 370).

Table 3. Values of LCL, UCL and D} — Dj for the IRC.

n D} D} D D}, D} D;

2 0.0045 42843 00088 39743 00040 37981
3 00953 47177 01348 44285 00563  2.7866
4 02713 49759 03427 46982 01318 24167
5 04642 51596 05549 48896  0.1996 22182
6 0.6470 53017 07489 50374 02553  2.0922
7 08133 54172 09218 51575 03008  2.0034
8 09628 55144 10752 52583 03382 1.9369
9 10973 55981 12121 53452 03695  1.8849
10 12188 56716 13349 54213 03960 18426
11 13201 57369 14459 5480 04189  1.8080
12 14298 57958 15469 55500 04380  1.7789
13 15222 58492 16393 56053 04563 17534
14 16074 58982 17244 56559 04718 17312
15 16864 59433 18031 57026 04857 17118
20 20107 61272 21250 58926 05383  1.6405
25 22550 62656 23667 60353 05736  1.5939

Notes: Dj denotes the one-sided LCL constant and Df; denotes the one-sided UCL constant.
The type I error risk is 0.005 (ARLy = 200).

For a one-sided ISC, the upper control limit UCLgy can be derived by solving the following

equation:

G {n—Ds’}=1-a,

&)
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Table 4. Values of LCL, UCL and B3 — B for the ISC.

n B B Bf B}, B B

2 0.0017 32049 00033 29997 00021 40167
3 00368 25704 00520 24318 00415 29005
4 0.0996 2.2825 0.1256 2.1722 0.1081 24775
5 0.1627 21094 01941 20155 01731 22440
6 0.2183 1.9910 0.2520 1.9081 0.2294 2.0925
7 02657 19034 03003 18285 02769  1.9839
8 03063 18353 03410 17666 03174  1.9019
9 0.3412 1.7804 0.3756 1.7166 0.3520 1.8368
10 03715 17350 04054 16752 03819 17837
11 03981 16966 04314 16401 04081 17394
12 04216 16635 04543 16100 04313 17016
13 0.4426 1.6347 0.4746 1.5837 0.4519 1.6691
14 04615 16094 04929 15605 04704 16406
15 04786 15868 05094 15398 04872 16154
20 05450 15021 05730 14624 05522 15220
25 0.5911 1.4457 0.6168 1.4107 0.5973 1.4609

Notes: Bf denotes the one-sided LCL constant and By; denotes the one-sided UCL constant.
The type I error risk is 0.0027 (ARL( = 370).

for s, say B{; . The lower control limit LCLgy can be derived by solving
Gy {n—1s"} =a, (10)

for s, say B} . For a two-sided ISC, the control limits UCLgt and LCLg7 can be obtained by
solving Equations (9) and (10), respectively, with the type I error « replaced by « /2. The upper-
sided and lower-sided ISC ’s limits are computed as

UCLgu = By*o and UCLg = BL 0. (11)

The two-sided ISC ’s limits are computed as
UCLgr = Bio and LCLgr = Bio. (12)

The retrospective two-sided ISC’s limits are
UCLgr = Bjs and LCLgr = B33, (13)
where constants B — B, By; and B} corresponding to the type I errors of 0.0027 and 0.005 are

provided in Tables 4 and 5, respectively.

3. Simulation studies: performance of the improved charts

In this section we use simulations to evaluate the proposed R chart and s chart. Simulation settings
follow from [14]. Let o be the nominal standard deviation (in our case, oy = 1) and ¢ be the
shifted process standard deviation. The magnitude of shifts in the process variability ¢ is defined
as o/op. When 6 = 1.0, the process is in-control. Without loss of generality, we assume that
the observations for the in control cases follow a standard normal distribution. Simulations are
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Table 5. Values of LCL and UCL constants, and Bg‘ — BZ for the ISC.

n B B Bf B}, B B

2 00032 30234 00062 28071 00040  3.7892
3 00501 24478 00707 23019 00565 2762l
4 0.1224 2.1849 0.1546 2.0687 0.1329 2.3715
5 0.1904 20264 02274 19275 02026 21557
6 0.2480 1.9176 0.2869 1.8303 0.2606 2.0153
7 02963 18371 03355 17582 03088 19148
8 03369 17745 03759 17021 03491 1.8389
9 0.3716 1.7239 0.4099 1.6567 0.3834 1.7785
10 04015 16821 04390 16190 04128 17293
Il 04275 16466 04643 15871 04383 16881
12 04505 16161 04864 15597 04608  1.6531
13 0.4710 1.5896 0.5061 1.5357 0.4809 1.6230
14 04893 15661 05236 15146 04988 15964
IS 05059 15452 05394 14957 05150 15730
20 05698 14670  0.6001 14251 05774 14865
25 0.6139 1.4148 0.6418 1.3778 0.6204 1.4297

Notes: B} denotes the one-sided LCL constant and By denotes the one-sided UCL constant. The
type I error risk is 0.005 (ARL( = 200).

performed based on 1,000,000 replications with the following factors: (1) in-control ARLy =
370; (2) sample sizes: n = 5,10 and 20 and (3) §: § € {1.05,1.10, 1.15, .. ., 3} (increasing shifts)
oré € {0.9,0.8,0.7,...,0.1} (decreasing shifts).

In the following, we use two-sided IRC to illustrate how we calculate the ARL. First, we gen-
erate the data under different settings based on the magnitude of shifts in the process variability
and sample size. Then we calculate the range statistic R; and use Equation (7) to compute the
control limits to see if R; is within the limits or not. Repeat the process 1,000,000 times. The
reciprocal of the proportion of times that R; is beyond the limits is the ARL. The upper, lower
and two-sided IRC control limits are derived by Equations (6) and (7). The upper, lower and
two-sided ISC control limits are derived by Equations (11) and (12).

Tables 6 and 7 give the ARL profiles of IRC and ISC, respectively. From Tables 6 and 7, we
can see that the in-control ARLs are all around 370. The ARL values become smaller as the
magnitude of shift increases or decreases. We also observe that with increased sample size, the
sensitivity of the chart also increases.

4. Comparison between the IRC and ISC

In this section, we compare IRC and ISC by examining the type II error risks and the ARLs. Let
R, and s, be the solutions of Equations (4) and (9), respectively. The type II error risk of the R
chart is

o0

PR < Ry|8 = 0) = / nf (UY(F(Ry + U) — F(U))"™" dU, (14)

—00

where f(-) and F(-) are the pdf and CDF functions of the N (0, o) distribution, respectively.
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Table 6. ARL profiles of the IRC, in-control ARL (ARLg)=2370.
n=>5 n=10 n=20

Upper- Lower-  Two-  Upper- Lower- Two-  Upper- Lower- Two-
§ =000 sided sided sided sided sided sided sided sided  sided
0.10 1.00 1.04 1.00 1.00 1.00 1.00
0.2 1.81 2.66 1.00 1.00 1.00 1.00
0.3 4.94 8.58 1.11 1.23 1.00 1.00
0.4 12.32 23.08 1.89 2.53 1.04 1.08
0.5 27.11 51.96 4.39 6.75 1.45 1.71
0.6 52.47 101.99 11.21 19.12 3.06 4.20
0.7 93.54 181.22 28.91 52.19 8.67 13.60
0.8 156.05 301.02 71.02  134.53 28.72 50.44
0.9 243.19  423.90 166.77  308.45 101.40 188.04
1.0 37133 37735 36941 37636 37299 37270 37481 36791 371.74
1.05 198.80 266.38 181.91 258.73  154.79 248.50
1.10 116.48 172.68 92.94 148.12  77.08 127.59
1.15 72.55 11096  53.59 87.26  40.57 66.21
1.20 47.28 73.80  33.07 52.27 23.69 3791
1.30 23.94 35.50 15.15 22.35 9.93 14.32
1.40 13.86 19.61 8.33 11.53 5.26 7.11
1.50 9.06 12.23 5.24 6.89 3.28 4.17
1.60 6.40 8.30 3.67 4.63 2.32 2.78
1.80 3.87 4.70 2.24 2.62 1.50 1.68
2.00 2.73 3.17 1.66 1.84 1.21 1.28
3.00 1.34 1.41 1.05 1.07 1.00 1.00

The type II error risk of the sample standard deviation S is
h—1(1 —
P(S<sa|8=o)=P<W<L2)>, (15)
o

where Q(-) is the quantile function of the x? distribution with n — 1 degrees of freedom. Let
D,(0) = P(R < Ry|6 =0) — P(S < 54|86 = o) be the difference between the type II error risks
of the IRC and ISC. Figure 1 plots D, (o) versus the process spread ¢ ranging from 1 to 5 with
different sample sizes n = 5, 10 and 20 for the upper-sided case. The dot dash curve, dash curve
and regular curve are associated with sample sizes n = 20,n = 10 and n = 5, respectively. We
see from Figure 1 that with an increase in the process spread, D,(o) increases to a maximum
then decreases until there is almost no difference between the type II error risks. The larger the
sample size, the larger the maximum value of D, (o), and the earlier the maximum value of
D, (o) is reached. The s chart is more effective (with greater power) when the sample size is
large. When the process spread is large enough, there is almost no difference between the two
charts. Figure 2 plots D, (o) versus the process spread o ranging from 0.1 to 1 for the lower-sided
case. Figure 2 reveals that the s chart is more effective (with greater power) when the sample size
is large; there is almost no difference between the two charts when the process spread is small
enough; the larger the sample size, the larger the maximum value of D, (o), and the slower the
maximum value of D, (o) is reached. Figure 3 plots D, (o) versus o ranging from 0.1 to 5 for
different sample sizes for the two-sided case. The shape in Figure 3 is basically a combination of
Figures 1 and 2 with an additional finding that the maximum of the difference between the type
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Table 7. ARL profiles of the ISC, in-control ARL (ARLg)=370.

n=>5 n=10 n =20

Upper- Lower-  Two-  Upper- Lower- Two- Upper- Lower- Two-
8 =o0/og sided sided sided sided sided sided sided sided sided

0.1 1.00 1.03 1.00 1.00 1.00 1.00
0.2 1.78 2.62 1.00 1.00 1.00 1.00
0.3 4.90 8.45 1.06 1.14 1.00 1.00
04 12.27 22.62 1.70 2.27 1.00 1.01
0.5 26.98 51.79 3.97 6.14 1.19 1.34
0.6 53.00 103.07 10.41 17.71 2.31 3.10
0.7 93.01 185.49 27.52 49.66 6.76 10.58
0.8 155.15  307.97 69.54 129.11 24.24 42.94
0.9 24521 444.64 166.77  300.21 95.36  174.67
1.0 372.21  366.16 368.18 36859 37091 367.78 37495 37285 368.36
1.05 184.80 263.01 156.32 225.27 120.59 187.23
1.10 107.08 157.38 75.37 120.29 48.40 78.82
1.15 65.45 99.95 41.86 63.97 23.07 35.54
1.20 42.95 64.13 24.35 36.73 12.57 18.32
1.30 21.22 30.48 10.82 14.99 5.15 6.72
1.40 12.28 16.85 5.96 7.76 2.83 3.43
1.50 8.01 10.49 3.82 4.74 1.92 2.20
1.60 5.73 7.20 2.75 3.26 1.50 1.64
1.80 3.49 4.16 1.80 2.01 1.16 1.20
2.00 2.50 2.87 1.41 1.51 1.05 1.07
3.00 1.29 1.35 1.02 1.03 1.00 1.00

g )

i o

; S

s 8

£

3
Process standard deviation

Figure 1. Plot of difference in type II error risks between the IRC and ISC versus the process standard
deviation, upper-sided.

II error risks is larger when o € (1,5) than that with o € (0, 1). When the sample size is large,
the range (which only use the maximum observation and minimum observation) is not enough
to deliver the sample information compared with the sample standard deviation. Therefore, the s
chart is more effective than the R chart under a large sample size.

Figure 4 plots the difference in ARLs defined as ARL(IRC)-ARL(ISC), versus the process
standard deviation o ranging from 0.1 to 5 under different sample sizes for the two-sided case.
Figure 4 in general reveals similar findings as Figures 1-3 except that the R chart looks more
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Figure 2. Plot of difference in type II error risks between the IRC and ISC versus the process standard
deviation, lower-sided.

Difference in type Il error risks

0.15 020 0.25

0.10

0.00 0.05

Process standard deviation

Figure 3. Plot of difference in type II error risks between the IRC and ISC versus the process standard
deviation, two-sided.
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Figure 4. Plot of difference in ARL between the IRC and ISC versus the process standard deviation.

effective in detecting signals when process standard deviation is between 0.6 and 1. This is
because a small change in the probability not shown in the type II error size figures may lead
to a big change in the ARL values. For example, when the standard deviation shifted slightly
from o = 1, the difference in type II error size is negligible, therefore not shown in Figures 1-3;
while, the difference in reciprocal of the powers are large enough to be detected by Figure 4.
Figure 4 indicates that ISC is not uniformly more efficient than IRC.
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Table 8. An illustrative example: simulated data.

Subgroup Observations Range

No.,j Xi Xo X3 Xy X5 R;

1.404 —1.426 0.624 1.489 0.454 2915

1

2 0.653 —1.768 0.814 —0.224 0.531 2421
3 —0.082 1.332 1.146  —0.721 1.816 2.537
4 —-0912 —-1.245 -0932 —-0.976 0.735 1.980
5 -0.621 —-0.935 —-0.080 —1.076 0.742 1.818
6 —2464 —1.087 —-1278 —4.671 —=3.110 3.584
7 —-1.697 —1.656 —0.862 3.117 2.738 4.814
8 2.558 0.566  —0.099 1.701  —=1.772 4.33
9 —0.963 0.359 0.812 0.797 —0.203 1.775
10 —4.107 3.126 —3.466 1.682 —0.782 7.233
11 1.047 0.185 0.617 0.557 3.022 2.837
12 3279 —2.259 0.847 —4.152 1.583 7.431
13 —2.821 1.719 0.201 0.739 0.567 4.54
14 0.368 1493  —-0.040 —1.639 4.485 6.124
15 4.947 1.723 1.183 4.658 1.738 3.764
16 1.259 0.922 2740 —-0.233 —0.067 2.973
17 —-2.168 —1.410 0.130 2.240 2.451 4.619
18 —1.870 1.009 —4.670 —0.002 0.096 5.679
19 —3.479 1.546 —1.482 1.842  —2.756 5.321
20 1.861 0.946 1.135 0.035 0.780 1.826

5. Example of application
5.1 Simulated data application

In this section, we describe an example (follows from [14]) to illustrate the usage of the IRC in
practice. The application of the s chart is similar. We simulated 20 subgroups of size 5, with the
first 5 subgroups in-control (iid observations from N (0, 1)) and the next 15 subgroups out-of-
control. For out-of-control process, the shift magnitude § = o /oy = 2. We report the simulated
data X, X5, X3,X4,Xs and the corresponding ranges, R;,j = 1,2,...,20, in Table 8. Now we

o
o |
UCL=5.1298
u ] A
5] s
Z v
o,
o
o |
5 10 15 20
SUBGROUPS

Figure 5. An IRC for the range R; (statistics are in Table 8).
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Table 9. Summary statistics for 20 samples of five surface
roughness measurements on reamed holes (in.).

Sample X X R s

1 34.6 35 9 3.4
2 46.8 45 23 8.8
3 32.6 34 12 4.6
4 42.6 41 6 2.7
5 26.6 28 5 24
6 29.6 30 2 0.9
7 33.6 31 13 6.0
8 28.2 30 5 2.5
9 25.8 26 9 3.2
10 32.6 30 15 7.5
11 34.0 30 22 9.1
12 34.8 35 5 1.9
13 36.2 36 3 1.3
14 27.4 23 24 9.6
15 27.2 28 3 1.3
16 32.8 32 5 2.2
17 31.0 30 6 2.5
18 33.8 32 6 2.7
19 30.8 30 4 1.6
20 21.0 21 2 1.0

want to derive a one-sided IRC for monitoring increases in the process variance with ARLy =
370. By Equation (4), UCLgyy is found to be 5.1298.

Figure 5 presents a plot of the range statistics R; versus the subgroups. We see from Figure 5
that the first out-of-control signal alarmed at subgroup 10.

5.2 Real data application

This example is about monitoring the surface roughness of reamed holes [25, p. 67]. Dohm et al.
worked with a manufacturer on a project involving roughness measurement after the reaming of

1 A ﬂ
o
UCL=8.4374
© LCL=0.6508
< 4
o 4

5 10 15 20
Subgroups

Standard Deviation of Surface Roughness

Figure 6. An ISC for the standard deviation s; (statistics are available from Table 9).
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preformed holes in a particular metal part. Table 9 contains some summary statistics (the sample
mean X, sample median X, sample range R and the sample standard deviation s) for 20 samples
(taken over a period of 10 days) of n = 5 consecutive reamed holes.
We are interested in developing a two-sided ISC for monitoring shifts in the process variance
with ARLy = 370. The 20 samples in Table 9 have s = 3.76. Using Table 4, for n = 5 one has
% = 2.244 and B} = 0.1731. Therefore, the upper control limit UCLgy = Bjs = 8.4374 and
the lower control limit LCLy = B3s = 0.6508. Figure 6 is a retrospective s chart for the sample
standard deviations in Table 9. From Figure 6, we can see that the chart signals an out-of-control
at subgroup 2 for the first time.

6. Conclusions

The R chart and s chart suffer from two main disadvantages: (1) the actual in-control ARL is
much lower than expected; (2) impossible in detecting an improvement in the process. In this
research, we propose the IRC and ISC by using the CDF of the range and sample standard
deviation to construct the control limits. The constants used to construct the control limits are
provided. Simulation results show that the proposed methods work very well. ISC has been
shown to be more effective than IRC in general, and is recommended for use with large sample
sizes.
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