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The Shewhart R control chart and s control chart are widely used to monitor shifts in the process spread.
One fact is that the distributions of the range and sample standard deviation are highly skewed. Therefore,
the R chart and s chart neither provide an in-control average run length (ARL) of approximately 370 nor
guarantee the desired type I error of 0.0027. Another disadvantage of these two charts is their failure in
detecting an improvement in the process variability. In order to overcome these shortcomings, we propose
the improved R chart (IRC) and s chart (ISC) with accurate approximation of the control limits by using
cumulative distribution functions of the sample range and standard deviation. Simulation studies show
that the IRC and ISC perform very well. We also compare the type II error risks and ARLs of the IRC and
ISC and found that the s chart is generally more efficient than the R chart. Examples are given to illustrate
the use of the developed charts.

Keywords: R chart; s chart; average run length; cumulative distribution function; process spread

1. Introduction

The Shewhart R control chart (R chart) and s control chart (s chart) [23] are widely used in
quality control. The range statistic Ri is defined as the difference between the largest observation
and the smallest observation within each subgroup i. Based on the 3σ approach, the control limits
of R chart is μR ± 3σR [25], where μR is the mean and σR is the standard deviation of Ri. The
retrospective upper control limit UCLR and lower control limit LCLR of R chart can be derived as

UCLR = D4R̄ and LCLR = D3R̄, (1)

where D3 and D4 are constants depending on the subgroup size n, and R̄ is an estimate of μR.
A viable competitor for the R chart is the s chart, which uses the average sample standard

deviation to estimate process variability σ . The s chart tends to detect changes in the process
spread quicker but with computational complexity. The retrospective control limits for the s
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chart based on μs ± 3σs are

UCLs = B4s̄ and LCLs = B3s̄, (2)

where B4 and B3 are constants depending on the subgroup size n, and s̄ is an estimate of μs.
Both R chart and s chart are based on the assumption that the underlying distribution of the

quality characteristic is approximately normal, while, the actual sampling distributions of range
R and standard deviation S have long tails on the right side. Even with a normally distributed
quality characteristic, the use of the 3σ approach is not appropriate. As shown in [16], the con-
trol limits in Equation (1) produce a higher type I error size than that of the X̄ chart. The R and
s charts could not provide an in-control average run length (ARL) of approximately 370 nor
guarantee the type I error size of 0.0027. When sample size is small, the LCLs of R and s charts
are truncated to 0 since the skewed distribution of R and S yield negative numbers for the LCLs.
Therefore, it is impossible to detect an improvement of the process. Table 1 gives the ARL pro-
files of R chart through simulation studies (refer to Section 3 for simulation settings). Table 1
shows that the in-control ARLs are all around 200, while the intended value is 370. The chance
of the two-sided R chart signaling below the LCL is nearly 0. To overcome these problems and to
deal with some special occasions, there has been a rich literature on the control charts. Khoo and
Lim [14] proposed an improved R chart (IRC) by using the density function to obtain the con-
trol limits based on a desired type I error size. Chan and Cui [10] proposed skewness correction
x-bar and R-charts for skewed distributions. Castagliola [8] and Tadikamalla and Popescu [24]
discussed improved methods for long-tailed symmetrical distributions of the quality characteris-
tics. Khoo [13] discussed the shortcomings of the conventional s chart and suggested a modified

Table 1. Two-sided and upper-sided R chart’s ARL profiles.

n = 5 n = 10 n = 20

δ = σ/σ0 Upper-sided Two-sided Upper-sided Two-sided Upper-sided Two-sided

0.10 1.00 1.00
0.20 1.44 1.00
0.30 6.24 1.03
0.40 33.68 1.66
0.50 163.63 5.12
0.60 650.61 23.40
0.70 2392.34 121.53

0.80 5586.59 648.92
0.90 1282.05 1162.79
1.00 217.34 217.95 223.41 228.15 224.36 209.16

1.05 121.43 123.54 119.21 112.66 98.40 96.76
1.10 73.92 72.50 63.11 63.27 49.35 50.00
1.15 47.84 47.43 37.07 37.95 27.71 27.62
1.20 32.38 32.70 23.97 24.08 16.59 16.71

1.30 17.43 17.35 11.65 11.55 7.55 7.56
1.40 10.60 10.59 6.69 6.67 4.23 4.21
1.50 7.22 7.22 4.37 4.39 2.76 2.76
1.60 5.26 5.26 3.17 3.17 2.02 2.03
1.80 3.33 3.33 2.03 2.02 1.39 1.39
2.00 2.44 2.44 1.55 1.54 1.16 1.16
3.00 1.29 1.29 1.04 1.04 1.00 1.00
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1262 G. Zhang

s chart for the process variance. Rakitzis and Antzoulakos [17] studied one-sided adaptive s con-
trol charts for detecting increases or decreases in the process variation. He and Grigoryan [11]
and Ahmad et al. [6] discussed monitoring variability under double sampling scheme. Acosta-
Mejia and Pignatiello [5] proposed modified R charts for improved performance, and Lee [15]
extended ideas of adaptive control charts to the Shewhart R chart for improving the efficiency
in signaling increases in the variance. Control charts based on exponentially weighted moving
average and cumulative sums (CUSUMs) also gain a lot of attentions, such as [1–4,9,12]. Other
techniques are also used in control charts. Riaz and Saghir [19] discussed monitoring process
variability using Gini’s mean difference. For monitoring changes, Riaz [18] and Riaz and Saghir
[20] proposed Shewhart-type control charts based on inter-quartile range and average absolute
deviations taken from the median respectively. Schoonhoven et al. [22] and Schoonhoven and
Does [21] also investigated robust control charts.

Most of the research in the literature are complicated methods which deal with some special
occasions. The R chart, s chart and the improved charts by Khoo and Lim [14] are relatively
simple and can be used by people with minimal quantitative backgrounds. These methods are
also robust tools, which has been successfully applied in various quality assurance situations.
Our proposed research is inspired by the work of Khoo and Lim [14]. One problem from Khoo
and Lim’s [14] approach is that the density function is obtained by means of the transformed data
Yi = F(Xi), i = 1, 2, . . . , n, in which the cumulative distribution function (CDF) F(Xi) needs to
be estimated. To avoid the bias introduced by estimating the parameters, we propose the IRC
and improved s chart (ISC) by using the CDF of Si and Ri directly. The precise control limits are
derived and the constants needed to construct the control charts are reported.

The present paper is divided into six sections. In Section 2, we propose the IRC and ISC;
in Section 3, we use simulation studies to investigate the performance of the proposed control
charts. Section 4 gives the comparison between the proposed R chart and s chart. Section 5 gives
two examples. Finally, Section 6 gives a summary of the research.

2. Improved R chart and s chart

2.1 Improved R chart

Assume that there is a series of subgroups. Each of them consists a size n sample, say
X1, X2, . . . , Xn. Assume that X1, X2, . . . , Xn are independent, identical and normally distributed
with mean μ and variance σ 2

0 . Without loss of generality, consider n iid standard normal vari-
ables Z1, . . . , Zn. Let U = minZi, V = maxZi and R = V − U . The joint density function of U
and V can be found from [7, p. 218] and is as follows:

f (U , V) =
{

n(n − 1)φ(U)φ(V)(�(V) − �(U))n−2, for V > U ,

0, otherwise,

where φ is the probability density function (pdf) of Zi and � is the CDF of Zi. By transformation,
the joint density function of U and R can be shown as follows:

g(U , R) =
{

n(n − 1)φ(U)φ(U + R)(�(U + R) − �(U))n−2, for R > 0,

0, otherwise.

The marginal CDF of R can be derived as follows:

HR(r) = P(R < r)

=
∫ r

0

∫ ∞

−∞
g(U , R) dU dR
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=
∫ ∞

−∞

∫ r

0
n(n − 1)φ(U)φ(U + R)(�(U + R) − �(U))n−2 dR dU

=
∫ ∞

−∞
nφ(U)(�(U + R) − �(U))n−1 dU . (3)

For a one-sided IRC, the upper control limit UCLRIU can be derived by solving the following
equation: ∫ ∞

−∞
nφ(U)(�(U + r) − �(U))n−1 dU = 1 − α, (4)

for r, say D∗
U , where α is the type I error. The lower control limit LCLRIL can be derived by

solving ∫ ∞

−∞
nφ(U)(�(U + r) − �(U))n−1 dU = α, (5)

for r, say D∗
L. The upper-sided and lower-sided IRC’s limits are computed as

UCLRIU = DU
∗σ and LCLRIL = DL

∗σ . (6)

For a two-sided IRC, the control limits UCLRIT and LCLRIT can be obtained by Equations (4)
and (5), respectively, with the type I error in both equations replaced by α/2. The two-sided
IRC’s limits are

UCLRIT = D∗
2σ and LCLRIT = D∗

1σ , (7)

and the two-sided retrospective IRC’s limits are

UCLRIT = D∗
4R̄ and LCLRIT = D∗

3R̄. (8)

We use the R program to evaluate the integrals in Equations (4) and (5) and report the constants
D∗

1 − D∗
4, D∗

U and D∗
L corresponding to the type I error sizes of 0.0027 and 0.005 in Tables 2 and 3,

respectively.

2.2 Improved s chart

Consider next estimating σ based on the sample variance of a process S2 = ∑n
i=1(Xi − X̄ )2/

(n − 1). The standard probability theory [7] says that (n − 1)S2/σ 2 ∼ χ2
n−1. Let W be a χ2

distribution with n − 1 degrees of freedom, i.e. W ∼ χ2
n−1. S has the same distribution as

σ
√

W/
√

n − 1. The CDF of S for the standard normal variables Z1, Z2, . . . , Zn is

HS(s) = P(S < s)

= P

(
1√

n − 1

√
W < s

)

= P{W < (n − 1)s2}
= Gχ2

n−1
{(n − 1)s2},

where G(·) is the CDF of the χ2 distribution with n − 1 degrees of freedom.
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1264 G. Zhang

Table 2. Values of LCL and UCL constants, and D∗
1 − D∗

4 for the IRC.

n D∗
1 D∗

2 D∗
L D∗

U D∗
3 D∗

4

2 0.0024 4.5477 0.0047 4.2502 0.0021 4.0316
3 0.0701 4.9642 0.0990 4.6858 0.0414 2.9322
4 0.2207 5.2132 0.2784 4.9453 0.1072 2.5319
5 0.3967 5.3906 0.4735 5.1298 0.1706 2.3175

6 0.5692 5.5280 0.6576 5.2725 0.2246 2.1815
7 0.7290 5.6398 0.8246 5.3885 0.2696 2.0857
8 0.8746 5.7340 0.9746 5.4861 0.3072 2.0141
9 1.0066 5.8152 1.1094 5.5702 0.3389 1.9580
10 1.1265 5.8863 1.2311 5.6439 0.3660 1.9124

11 1.2359 5.9499 1.3414 5.7095 0.3895 1.8752
12 1.3361 6.0070 1.4422 5.7686 0.4101 1.8438
13 1.4283 6.0589 1.5346 5.8223 0.4281 1.8162
14 1.5135 6.1065 1.6199 5.8714 0.4442 1.7923
15 1.5926 6.1504 1.6988 5.9167 0.4587 1.7714

20 1.9182 6.3293 2.0228 6.1013 0.5136 1.6946
25 2.1645 6.4641 2.2669 6.2401 0.5506 1.6444

Notes: D∗
L denotes the one-sided LCL constant and D∗

U denotes the one-sided UCL constant.
The type I error risk is 0.0027 (ARL0 = 370).

Table 3. Values of LCL, UCL and D∗
1 − D∗

4 for the IRC.

n D∗
1 D∗

2 D∗
L D∗

U D∗
3 D∗

4

2 0.0045 4.2843 0.0088 3.9743 0.0040 3.7981
3 0.0953 4.7177 0.1348 4.4285 0.0563 2.7866
4 0.2713 4.9759 0.3427 4.6982 0.1318 2.4167
5 0.4642 5.1596 0.5549 4.8896 0.1996 2.2182

6 0.6470 5.3017 0.7489 5.0374 0.2553 2.0922
7 0.8133 5.4172 0.9218 5.1575 0.3008 2.0034
8 0.9628 5.5144 1.0752 5.2583 0.3382 1.9369
9 1.0973 5.5981 1.2121 5.3452 0.3695 1.8849
10 1.2188 5.6716 1.3349 5.4213 0.3960 1.8426

11 1.3291 5.7369 1.4459 5.4890 0.4189 1.8080
12 1.4298 5.7958 1.5469 5.5500 0.4389 1.7789
13 1.5222 5.8492 1.6393 5.6053 0.4563 1.7534
14 1.6074 5.8982 1.7244 5.6559 0.4718 1.7312
15 1.6864 5.9433 1.8031 5.7026 0.4857 1.7118

20 2.0107 6.1272 2.1250 5.8926 0.5383 1.6405
25 2.2550 6.2656 2.3667 6.0353 0.5736 1.5939

Notes: D∗
L denotes the one-sided LCL constant and D∗

U denotes the one-sided UCL constant.
The type I error risk is 0.005 (ARL0 = 200).

For a one-sided ISC, the upper control limit UCLsIU can be derived by solving the following
equation:

Gχ2
n−1

{(n − 1)s2} = 1 − α, (9)
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Table 4. Values of LCL, UCL and B∗
3 − B∗

6 for the ISC.

n B∗
5 B∗

6 B∗
L B∗

U B∗
3 B∗

4

2 0.0017 3.2049 0.0033 2.9997 0.0021 4.0167
3 0.0368 2.5704 0.0520 2.4318 0.0415 2.9005
4 0.0996 2.2825 0.1256 2.1722 0.1081 2.4775
5 0.1627 2.1094 0.1941 2.0155 0.1731 2.2440

6 0.2183 1.9910 0.2520 1.9081 0.2294 2.0925
7 0.2657 1.9034 0.3003 1.8285 0.2769 1.9839
8 0.3063 1.8353 0.3410 1.7666 0.3174 1.9019
9 0.3412 1.7804 0.3756 1.7166 0.3520 1.8368
10 0.3715 1.7350 0.4054 1.6752 0.3819 1.7837

11 0.3981 1.6966 0.4314 1.6401 0.4081 1.7394
12 0.4216 1.6635 0.4543 1.6100 0.4313 1.7016
13 0.4426 1.6347 0.4746 1.5837 0.4519 1.6691
14 0.4615 1.6094 0.4929 1.5605 0.4704 1.6406
15 0.4786 1.5868 0.5094 1.5398 0.4872 1.6154

20 0.5450 1.5021 0.5730 1.4624 0.5522 1.5220
25 0.5911 1.4457 0.6168 1.4107 0.5973 1.4609

Notes: B∗
L denotes the one-sided LCL constant and B∗

U denotes the one-sided UCL constant.
The type I error risk is 0.0027 (ARL0 = 370).

for s, say B∗
U . The lower control limit LCLsIL can be derived by solving

Gχ2
n−1

{(n − 1)s2} = α, (10)

for s, say B∗
L. For a two-sided ISC, the control limits UCLsIT and LCLsIT can be obtained by

solving Equations (9) and (10), respectively, with the type I error α replaced by α/2. The upper-
sided and lower-sided ISC ’s limits are computed as

UCLsIU = BU
∗σ and UCLsIL = BL

∗σ . (11)

The two-sided ISC ’s limits are computed as

UCLsIT = B∗
6σ and LCLsIT = B∗

5σ . (12)

The retrospective two-sided ISC’s limits are

UCLsIT = B∗
4 s̄ and LCLsIT = B∗

3 s̄, (13)

where constants B∗
3 − B∗

6, B∗
U and B∗

L corresponding to the type I errors of 0.0027 and 0.005 are
provided in Tables 4 and 5, respectively.

3. Simulation studies: performance of the improved charts

In this section we use simulations to evaluate the proposed R chart and s chart. Simulation settings
follow from [14]. Let σ0 be the nominal standard deviation (in our case, σ0 = 1) and σ be the
shifted process standard deviation. The magnitude of shifts in the process variability δ is defined
as σ/σ0. When δ = 1.0, the process is in-control. Without loss of generality, we assume that
the observations for the in control cases follow a standard normal distribution. Simulations are
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1266 G. Zhang

Table 5. Values of LCL and UCL constants, and B∗
3 − B∗

6 for the ISC.

n B∗
5 B∗

6 B∗
L B∗

U B∗
3 B∗

4

2 0.0032 3.0234 0.0062 2.8071 0.0040 3.7892
3 0.0501 2.4478 0.0707 2.3019 0.0565 2.7621
4 0.1224 2.1849 0.1546 2.0687 0.1329 2.3715
5 0.1904 2.0264 0.2274 1.9275 0.2026 2.1557

6 0.2480 1.9176 0.2869 1.8303 0.2606 2.0153
7 0.2963 1.8371 0.3355 1.7582 0.3088 1.9148
8 0.3369 1.7745 0.3759 1.7021 0.3491 1.8389
9 0.3716 1.7239 0.4099 1.6567 0.3834 1.7785
10 0.4015 1.6821 0.4390 1.6190 0.4128 1.7293

11 0.4275 1.6466 0.4643 1.5871 0.4383 1.6881
12 0.4505 1.6161 0.4864 1.5597 0.4608 1.6531
13 0.4710 1.5896 0.5061 1.5357 0.4809 1.6230
14 0.4893 1.5661 0.5236 1.5146 0.4988 1.5964
15 0.5059 1.5452 0.5394 1.4957 0.5150 1.5730

20 0.5698 1.4670 0.6001 1.4251 0.5774 1.4865
25 0.6139 1.4148 0.6418 1.3778 0.6204 1.4297

Notes: B∗
L denotes the one-sided LCL constant and B∗

U denotes the one-sided UCL constant. The
type I error risk is 0.005 (ARL0 = 200).

performed based on 1,000,000 replications with the following factors: (1) in-control ARL0 =
370; (2) sample sizes: n = 5, 10 and 20 and (3) δ: δ ∈ {1.05, 1.10, 1.15, . . . , 3} (increasing shifts)
or δ ∈ {0.9, 0.8, 0.7, . . . , 0.1} (decreasing shifts).

In the following, we use two-sided IRC to illustrate how we calculate the ARL. First, we gen-
erate the data under different settings based on the magnitude of shifts in the process variability
and sample size. Then we calculate the range statistic Ri and use Equation (7) to compute the
control limits to see if Ri is within the limits or not. Repeat the process 1,000,000 times. The
reciprocal of the proportion of times that Ri is beyond the limits is the ARL. The upper, lower
and two-sided IRC control limits are derived by Equations (6) and (7). The upper, lower and
two-sided ISC control limits are derived by Equations (11) and (12).

Tables 6 and 7 give the ARL profiles of IRC and ISC, respectively. From Tables 6 and 7, we
can see that the in-control ARLs are all around 370. The ARL values become smaller as the
magnitude of shift increases or decreases. We also observe that with increased sample size, the
sensitivity of the chart also increases.

4. Comparison between the IRC and ISC

In this section, we compare IRC and ISC by examining the type II error risks and the ARLs. Let
Rα and sα be the solutions of Equations (4) and (9), respectively. The type II error risk of the R
chart is

P(R < Rα|δ = σ) =
∫ ∞

−∞
nf (U)(F(Rα + U) − F(U))n−1 dU , (14)

where f (·) and F(·) are the pdf and CDF functions of the N(0, σ 2) distribution, respectively.
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Table 6. ARL profiles of the IRC, in-control ARL (ARL0) = 370.

n = 5 n = 10 n = 20

Upper- Lower- Two- Upper- Lower- Two- Upper- Lower- Two-
δ = σ/σ0 sided sided sided sided sided sided sided sided sided

0.10 1.00 1.04 1.00 1.00 1.00 1.00
0.2 1.81 2.66 1.00 1.00 1.00 1.00
0.3 4.94 8.58 1.11 1.23 1.00 1.00
0.4 12.32 23.08 1.89 2.53 1.04 1.08
0.5 27.11 51.96 4.39 6.75 1.45 1.71

0.6 52.47 101.99 11.21 19.12 3.06 4.20
0.7 93.54 181.22 28.91 52.19 8.67 13.60
0.8 156.05 301.02 71.02 134.53 28.72 50.44
0.9 243.19 423.90 166.77 308.45 101.40 188.04
1.0 371.33 377.35 369.41 376.36 372.99 372.70 374.81 367.91 371.74

1.05 198.80 266.38 181.91 258.73 154.79 248.50
1.10 116.48 172.68 92.94 148.12 77.08 127.59
1.15 72.55 110.96 53.59 87.26 40.57 66.21
1.20 47.28 73.80 33.07 52.27 23.69 37.91
1.30 23.94 35.50 15.15 22.35 9.93 14.32
1.40 13.86 19.61 8.33 11.53 5.26 7.11
1.50 9.06 12.23 5.24 6.89 3.28 4.17

1.60 6.40 8.30 3.67 4.63 2.32 2.78
1.80 3.87 4.70 2.24 2.62 1.50 1.68
2.00 2.73 3.17 1.66 1.84 1.21 1.28
3.00 1.34 1.41 1.05 1.07 1.00 1.00

The type II error risk of the sample standard deviation S is

P(S < sα|δ = σ) = P

(
W <

Qn−1(1 − α)

σ 2

)
, (15)

where Q(·) is the quantile function of the χ2 distribution with n − 1 degrees of freedom. Let
Dn(σ ) = P(R < Rα|δ = σ) − P(S < sα|δ = σ) be the difference between the type II error risks
of the IRC and ISC. Figure 1 plots Dn(σ ) versus the process spread σ ranging from 1 to 5 with
different sample sizes n = 5, 10 and 20 for the upper-sided case. The dot dash curve, dash curve
and regular curve are associated with sample sizes n = 20, n = 10 and n = 5, respectively. We
see from Figure 1 that with an increase in the process spread, Dn(σ ) increases to a maximum
then decreases until there is almost no difference between the type II error risks. The larger the
sample size, the larger the maximum value of Dn(σ ), and the earlier the maximum value of
Dn(σ ) is reached. The s chart is more effective (with greater power) when the sample size is
large. When the process spread is large enough, there is almost no difference between the two
charts. Figure 2 plots Dn(σ ) versus the process spread σ ranging from 0.1 to 1 for the lower-sided
case. Figure 2 reveals that the s chart is more effective (with greater power) when the sample size
is large; there is almost no difference between the two charts when the process spread is small
enough; the larger the sample size, the larger the maximum value of Dn(σ ), and the slower the
maximum value of Dn(σ ) is reached. Figure 3 plots Dn(σ ) versus σ ranging from 0.1 to 5 for
different sample sizes for the two-sided case. The shape in Figure 3 is basically a combination of
Figures 1 and 2 with an additional finding that the maximum of the difference between the type
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1268 G. Zhang

Table 7. ARL profiles of the ISC, in-control ARL (ARL0) = 370.

n = 5 n = 10 n = 20

Upper- Lower- Two- Upper- Lower- Two- Upper- Lower- Two-
δ = σ/σ0 sided sided sided sided sided sided sided sided sided

0.1 1.00 1.03 1.00 1.00 1.00 1.00
0.2 1.78 2.62 1.00 1.00 1.00 1.00
0.3 4.90 8.45 1.06 1.14 1.00 1.00
0.4 12.27 22.62 1.70 2.27 1.00 1.01
0.5 26.98 51.79 3.97 6.14 1.19 1.34

0.6 53.00 103.07 10.41 17.71 2.31 3.10
0.7 93.01 185.49 27.52 49.66 6.76 10.58
0.8 155.15 307.97 69.54 129.11 24.24 42.94
0.9 245.21 444.64 166.77 300.21 95.36 174.67
1.0 372.21 366.16 368.18 368.59 370.91 367.78 374.95 372.85 368.36

1.05 184.80 263.01 156.32 225.27 120.59 187.23
1.10 107.08 157.38 75.37 120.29 48.40 78.82
1.15 65.45 99.95 41.86 63.97 23.07 35.54
1.20 42.95 64.13 24.35 36.73 12.57 18.32
1.30 21.22 30.48 10.82 14.99 5.15 6.72
1.40 12.28 16.85 5.96 7.76 2.83 3.43
1.50 8.01 10.49 3.82 4.74 1.92 2.20

1.60 5.73 7.20 2.75 3.26 1.50 1.64
1.80 3.49 4.16 1.80 2.01 1.16 1.20
2.00 2.50 2.87 1.41 1.51 1.05 1.07
3.00 1.29 1.35 1.02 1.03 1.00 1.00
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Figure 1. Plot of difference in type II error risks between the IRC and ISC versus the process standard
deviation, upper-sided.

II error risks is larger when σ ∈ (1, 5) than that with σ ∈ (0, 1). When the sample size is large,
the range (which only use the maximum observation and minimum observation) is not enough
to deliver the sample information compared with the sample standard deviation. Therefore, the s
chart is more effective than the R chart under a large sample size.

Figure 4 plots the difference in ARLs defined as ARL(IRC)–ARL(ISC), versus the process
standard deviation σ ranging from 0.1 to 5 under different sample sizes for the two-sided case.
Figure 4 in general reveals similar findings as Figures 1–3 except that the R chart looks more
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Figure 2. Plot of difference in type II error risks between the IRC and ISC versus the process standard
deviation, lower-sided.
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Figure 3. Plot of difference in type II error risks between the IRC and ISC versus the process standard
deviation, two-sided.
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Figure 4. Plot of difference in ARL between the IRC and ISC versus the process standard deviation.

effective in detecting signals when process standard deviation is between 0.6 and 1. This is
because a small change in the probability not shown in the type II error size figures may lead
to a big change in the ARL values. For example, when the standard deviation shifted slightly
from σ = 1, the difference in type II error size is negligible, therefore not shown in Figures 1–3;
while, the difference in reciprocal of the powers are large enough to be detected by Figure 4.
Figure 4 indicates that ISC is not uniformly more efficient than IRC.
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1270 G. Zhang

Table 8. An illustrative example: simulated data.

ObservationsSubgroup Range
No., j X1 X2 X3 X4 X5 Rj

1 1.404 −1.426 0.624 1.489 0.454 2.915
2 0.653 −1.768 0.814 −0.224 0.531 2.421
3 −0.082 1.332 1.146 −0.721 1.816 2.537
4 −0.912 −1.245 −0.932 −0.976 0.735 1.980
5 −0.621 −0.935 −0.080 −1.076 0.742 1.818
6 −2.464 −1.087 −1.278 −4.671 −3.110 3.584
7 −1.697 −1.656 −0.862 3.117 2.738 4.814
8 2.558 0.566 −0.099 1.701 −1.772 4.33
9 −0.963 0.359 0.812 0.797 −0.203 1.775
10 −4.107 3.126 −3.466 1.682 −0.782 7.233
11 1.047 0.185 0.617 0.557 3.022 2.837
12 3.279 −2.259 0.847 −4.152 1.583 7.431
13 −2.821 1.719 0.201 0.739 0.567 4.54
14 0.368 1.493 −0.040 −1.639 4.485 6.124
15 4.947 1.723 1.183 4.658 1.738 3.764
16 1.259 0.922 2.740 −0.233 −0.067 2.973
17 −2.168 −1.410 0.130 2.240 2.451 4.619
18 −1.870 1.009 −4.670 −0.002 0.096 5.679
19 −3.479 1.546 −1.482 1.842 −2.756 5.321
20 1.861 0.946 1.135 0.035 0.780 1.826

5. Example of application

5.1 Simulated data application

In this section, we describe an example (follows from [14]) to illustrate the usage of the IRC in
practice. The application of the s chart is similar. We simulated 20 subgroups of size 5, with the
first 5 subgroups in-control (iid observations from N(0, 1)) and the next 15 subgroups out-of-
control. For out-of-control process, the shift magnitude δ = σ/σ0 = 2. We report the simulated
data X1, X2, X3, X4, X5 and the corresponding ranges, Rj, j = 1, 2, . . . , 20, in Table 8. Now we

5 10 15 20

0
2

4
6

8
10

SUBGROUPS

R
A

N
G

E

UCL=5.1298

Figure 5. An IRC for the range Rj (statistics are in Table 8).
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Table 9. Summary statistics for 20 samples of five surface
roughness measurements on reamed holes (in.).

Sample x̄ x̃ R s

1 34.6 35 9 3.4
2 46.8 45 23 8.8
3 32.6 34 12 4.6
4 42.6 41 6 2.7
5 26.6 28 5 2.4
6 29.6 30 2 0.9
7 33.6 31 13 6.0
8 28.2 30 5 2.5
9 25.8 26 9 3.2
10 32.6 30 15 7.5
11 34.0 30 22 9.1
12 34.8 35 5 1.9
13 36.2 36 3 1.3
14 27.4 23 24 9.6
15 27.2 28 3 1.3
16 32.8 32 5 2.2
17 31.0 30 6 2.5
18 33.8 32 6 2.7
19 30.8 30 4 1.6
20 21.0 21 2 1.0

want to derive a one-sided IRC for monitoring increases in the process variance with ARL0 =
370. By Equation (4), UCLRIU is found to be 5.1298.

Figure 5 presents a plot of the range statistics Rj versus the subgroups. We see from Figure 5
that the first out-of-control signal alarmed at subgroup 10.

5.2 Real data application

This example is about monitoring the surface roughness of reamed holes [25, p. 67]. Dohm et al.
worked with a manufacturer on a project involving roughness measurement after the reaming of
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Figure 6. An ISC for the standard deviation sj (statistics are available from Table 9).
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1272 G. Zhang

preformed holes in a particular metal part. Table 9 contains some summary statistics (the sample
mean x̄, sample median x̃, sample range R and the sample standard deviation s) for 20 samples
(taken over a period of 10 days) of n = 5 consecutive reamed holes.

We are interested in developing a two-sided ISC for monitoring shifts in the process variance
with ARL0 = 370. The 20 samples in Table 9 have s̄ = 3.76. Using Table 4, for n = 5 one has
B∗

4 = 2.244 and B∗
3 = 0.1731. Therefore, the upper control limit UCLsIU = B∗

4 s̄ = 8.4374 and
the lower control limit LCLsIL = B∗

3 s̄ = 0.6508. Figure 6 is a retrospective s chart for the sample
standard deviations in Table 9. From Figure 6, we can see that the chart signals an out-of-control
at subgroup 2 for the first time.

6. Conclusions

The R chart and s chart suffer from two main disadvantages: (1) the actual in-control ARL is
much lower than expected; (2) impossible in detecting an improvement in the process. In this
research, we propose the IRC and ISC by using the CDF of the range and sample standard
deviation to construct the control limits. The constants used to construct the control limits are
provided. Simulation results show that the proposed methods work very well. ISC has been
shown to be more effective than IRC in general, and is recommended for use with large sample
sizes.
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