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Adjusted Confidence Bands for Complex Survey Data

Guoyi Zhang∗, Maozhen Gong†and Yang Cheng‡

Abstract

Confidence bands in nonparametric regression have been studied for a long time with data

assumed to be generated from independent and identically distributed (iid) random variables.

The methods and theoretical results for iid data, however, do not directly apply to data from

stratified multistage samples. In this paper, we extend the confidence bands introduced by

Zhang and Lu (2008) for iid case to complex surveys based on an entirely data-driven pro-

cedure; the proposed confidence bands incorporate both the sampling weights and the kernel

weights. Simulation studies show that the proposed method works well.

Key Words: Complex surveys, Confidence bands, Local linear estimator, Nonparametric re-

gression, Simulations.

1 Introduction

A confidence band enables us to estimate the region in which the true function lies. It can also be

used to determine the appropriateness of a fitted regression function. At the end of the nineteenth

century, it was widely thought that criminal tendencies might be expressed in physical charac-

teristics that were distinguishable from the physical characteristics of noncriminal classes. Lohr

(2010, page423) considered an unequal-probability sample (shorter men have smaller weights and

taller men have larger weights) of 200 men taken from Macdonell (1901)’s data on length (cm)
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of the left middle finger and height (inches) for 3000 criminals. To model the relationship be-

tween length of the left middle finger and height, the choice between a parametric regression line

and a nonparametric curve is quite subjective. This research intends to provide a tool to deter-

mine the appropriateness of a fitted regression function. A lack of fit test is a possible application

of confidence bands. For example, we wish to test the parametric linear null hypothesis of the

form: H0 : μ = Xβ against a nonparametric alternative. If the regression function under the null

hypothesis is not entirely contained in the confidence band, we can reject the null hypothesis.

Consider a general nonparametric regression model

yi = m(xi) + εi , i = 1,2, ∙ ∙ ∙ n, (1)

wherem(∙) is an unknown function andεi are zero mean random errors with common varianceσ2.

Without loss of generality, we assume thatxi ∈ [0,1], i = 1,2, . . . , n. Givenα ∈ (0,1), to construct

a confidence band, we need an estimator ˆm(x) for m(x) and a boundlα, such that

P{ |m̂(x) −m(x)| ≤ lα for all x} ≥ 1− α. (2)

A 100(1-α)% confidence band can be constructed as ˆm(x)± lα, in which the bias of ˆm is considered

to be negligible relative to its standard error. A bias-corrected confidence band in literature takes

the form of m̂(x) − b̂ias± lα, which involves estimating the second derivative of the regression

function. Zhang and Lu (2008) suggest a confidence band that takes the form of ˆm(x) ± c ∗ lα

and use a logistic regression model to estimate the coefficientc. The idea of incorporating logistic

regression is to setci(i = 1,2, ....1000) as equally spaced points between some specific interval, say

(0,1.5), and sethi as a binary response variable with 1 indicating that the constructed confidence

band from simulation contains the estimate of the regression function and 0 otherwise. Zhang and

Lu (2008)’s method is efficient, simple to use and can be applied to fixed equal spaced design and

randomly designedxis.

This research extends the confidence bands suggested by Zhang and Lu (2008) for iid case to

complex surveys. A complex survey may include strata and clusters at the design stage, in which
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the general iid assumption in (1) is contradicted and standard nonparametric estimation methods

do not apply. In addition, ignoring the survey weights may lead to biased inferences, or undesired

outcome in the survey sampling practice. In the following, we review the nonparametric regression

estimators and difference-based variance estimators in complex surveys.

Classical nonparametric regression estimators and methods have been extended and investi-

gated in survey area. Korn and Graubard (1998) suggested nonparametric smoothing for estimating

conditional means and percentile curves. Bellhouse and Stafford (1999, 2001) developed estima-

tors for density estimation and regression functions. Breidt and Opsomer (2000) proposed local

polynomial regression estimators for estimating population totals and proved that their estimator is

asymptotically design unbiased and consistent. Buskirk and Lohr (2005) presented finite-sample

and asymptotic properties under several approaches for inference of a modified density estimator

introduced by Buskirk (1998) and Bellhouse and Stafford (1999). Harms and Duchesne (2010)

derived the asymptotic mean squared error of the kernel estimators using a combined inference

framework. They first proposed a completely data driven optimal bandwidth for use in local linear

estimator for complex surveys.

If m(∙) in (1) is smooth and thex ordinates are closely spaced, it is possible to remove the effect

of the unknown function by differencing the data appropriately. So variance could be estimated

without having to estimate the underlying regression curve. Gasser, Sroka, and Jennen-Steinmetz

(1986) employed Rice (1984) suggestion of a pseudo-residual estimator in the case of nonparamet-

ric regression and showed that the variance could be estimated with parametric efficiency without

having to estimate the underlying regression curve. Since then, the idea of pseudo-residuals at-

tracted many interests from statisticians. Pseudo-residuals of similar form were used in Müller

and Stadtm̈uller (1987) for estimating heteroscedasticity in regression analysis. Hall, Kay, and Tit-

terington (1990) suggested and computed asymptotically optimal difference sequence for estimat-

ing error variance in homoscedastic nonparametric regression. Buckley, Eagleson, and Silverman

(1988) considered a wide class of estimators of the residual variance in nonparametric regression
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and derived the minimax mean squared error estimator over a natural class of regression curve.

Eubank, Kambour, Kim, Klipple, and Reese (1998), and Klipple and Eubank (2007) extended

work from Gasser et al. (1986) to partially linear models. Lu (2014) extends the variance estimator

from Gasser et al. (1986) by incorporating survey weights to nonparametric regression in complex

surveys and derived the asymptotic properties.

This paper is organized as follows. In Section 2, we review the local linear estimator by Harms

and Duchesne (2010) and difference based estimator by Lu (2014). In Section 3, we propose the

adjusted confidence bands for nonparametric regression in complex surveys. In Section 4, we

perform simulation studies. Section 5 gives the conclusion.

2 Background

2.1 Local linear estimator using completely data driven bandwidth selection

methods in complex surveys

The classical bandwidth of nonparametric regression relies on an estimator of the optimal band-

width for iid data and is of the plug-in type. By modifying the bandwidth by a correction factor that

takes into account the sampling plan, Harms and Duchesne (2010) proposed a bandwidth selector

of the local linear estimator for use in complex surveys.

Let S be a survey sample,N be the population size,nS be the sample size (note thatnS is

random withE(nS) = n), and letπi be the first order inclusion probability withπi = p(unit i ∈ S).

Sample weightdi is the reciprocal of the inclusion probabilityπi, i.e. di = 1/πi for i ∈ S. Let N̂

be an estimate of population sizeN, i.e. N̂ =
∑nS

i=1 di and letr be the sampling rate defined as

r = nS/N.

The local linear kernel estimator incorporating sample weights has a simple explicit formula as
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the following

m̂(x,h) =

∑
S{ŝ2(x,h) − ŝ1(x,h)(xk − x)}dkykK(

xk − x
h

)/h

ŝ2(x,h)ŝ0(x,h) − ŝ2
1(x,h)

, (3)

whereŝi(x,h) =
∑

S dk(xk − x)iK(
xk − x

h
)/h, i = 0,1, and 2, andK(∙) is the kernel function.

Let m̃(x,h) be the classical local linear estimator ignoring sample weights. Harms and Duch-

esne (2010) showed that

Bias[m̂(x,h)] = Bias[m̃(x,h)] , (4)

and

Var[m̂(x,h)] = (4 + r)Var [m̃(x,h)] , 4 = nS/N
2
∑

U

(dk − 1), (5)

where subscriptU denotes summing over the population elements.

By using (4) and (5), Harms and Duchesne (2010) derived the optimal bandwidth for ˆm by

minimizing the asymptotic MSE as the following

ĥopt(t) = (4 + r)1/5h̃opt, (6)

whereh̃opt is the optimal bandwidth for ˜m(x,h), (4 + r)1/5 is called the correction factor. The

correction factor is a function that can be interpreted as a multiplicative factor taking into account

the information concerning the survey design. Details can be found from Harms and Duchesne

(2010).

2.2 Difference Based Variance Estimator for Nonparametric Regression in

Complex Survey

The goal of difference based estimator is to estimate the random error in nonparametric regression

based on a sampleS drawn according to a complex sampling plan without estimating the unknown

regression functionm(∙). Recall thatπi = P(i ∈ S) is the first order inclusion probability, and 1/πi
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represents the sampling weight. Lu (2014) extended the estimator from Gasser et al. (1986) to

complex surveys as follows:

σ̂2 =

∑n−2
i=1

1
πi
ε̃2i

∑n−2
i=1

1
πi

, (7)

or in a matrix form as

σ̂2 =
yTDTWDy
tr(DTWD)

, (8)

wherey = (y1, ..., yn)T , W is a diagonal matrix withith diagonal element 1/πi, tr is the trace

function for a square matrix, ˜εi are called pseudo-residuals defined by

ε̃i = di0yi + di1yi+1 + di2yi+2, (9)

with

di0 =
−ai

√
1+ a2

i + b2
i

, di1 =
1

√
1+ a2

i + b2
i

, di2 =
−bi

√
1+ a2

i + b2
i

for

ai =
xi+2 − xi+1

xi+2 − xi
andbi =

xi+1 − xi

xi+2 − xi
,

and the (n− 2)× n matrixD has theith row [0i−1,di0,di1,di2,0n−i−2] with 0r representing ar-vector

with all zero elements. Given some certain conditions, Lu (2014) showed that

θ−1(σ̂2 − σ2)
d
→ N(0, σ4), (10)

whereθ = {
2tr((DTWD)2)
(tr(DTWD))2

+
(m4 − 3)

∑n
i=1 s2

i

(tr(DTWD))2
}1/2, si is theith diagonal element of matrixDTWD

andE(ε4) = m4σ
4. Lu (2014) also derived the formulas for bias and variance of the estimator ˆσ2.

3 Adjusted Confidence Bands in Complex Surveys

In classical nonparametric regression, the confidence bands proposed by Bickel and Rosenblatt

(1973, 1975), Eubank and Speckman (1993) and Xia (1998) are commonly used. Eubank and
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Speckman (1993) and Xia (1998) estimated the bias and recentered the confidence bands. How-

ever, one disadvantage of the above confidence bands is the slow convergence rate. In practice,

we have finite samples, such asn = 200 (this is commonly considered as a large sample size in

regression problems). Since the convergence rate is very slow, this sample size is not large enough

to approximate the population quantities by sample estimators. Besides recentering the bands by

correction of bias, another approach is to expand the bands to account for the bias. The confidence

bands therefore take the form of ˆm(x) ± c ∗ lα(x) (Zhang & Lu, 2008).

In this section, we extend the confidence bands suggested by Zhang and Lu (2008) for iid case

to complex surveys. The extended confidence bands are in similar forms as those with iid data but

with some modifications. We describe them as follows

m̂(x) ± c ∗ lα(x),

with

lα(x) =
σ̂(x)V

(
∑

i∈S
wi(x))1/4





√
−2 log(ĥ) +

1
√
−2 log(ĥ)

(A− Xα)




, (11)

A = log

{
1
2π

(
∫

K′(u)2du/
∫

K(u)2du)1/2

}

,

Xα = log

{
− log(1− α)

2

}

,

wi(x) = K
( xi − x

h

) (
s2 −

xi − x
h

s1

)
,

sl =
∑

i∈S

diK
( xi − x

h

) ( xi − x
h

)l

l = 1,2,

m̂(x) =
∑

i∈S

wi(x)yi/
∑

i∈S

wi(x),

V =

√∫
K(u)2du,

whereK(∙) is a kernel function,̂h is the selected bandwidth, ˆσ(x) is the consistent estimator ofσ(x)
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using (7),wi(x) is a weight function that combines the kernel weights and sampling weights, and

c = inf
b∈R
{P( |m̂(x) −m(x)| ≤ b ∗ lα for all x ) ≥ 1− α} . (12)

The adjustment constantc has the following property:

Proposition 1. Assume that the sampling rate rj = nS, j/Nj converges with probability one to a

finite constantγ, as j→ ∞. The adjustment value c is a monotone decreasing function of sample

size nS and the limit of the adjustment value is 1.

Proof. From (11), the boundlα has two parts. The first part, ˆσ(x)V̂/(
∑

i∈S
wi(x))1/4, is the estimated

standard deviation of ˆm. The second part,





√
−2 log(ĥ) +

1
√
−2 log(ĥ)

(A− Xα)




, is a decreasing

function of the bandwidth. As the sample size increases, the selected bandwidth decreases. The

bias and the first part of the bound decay at the same rate: namely,n
− 2

5
S . The second part of the

bound increases as the sample size increases. Hence, the bias decays faster than the bound. We

only need a smallerc to compensate for the bias when we use a bigger sample size. In other words,

the adjustment valuec is a monotone decreasing function of the sample sizenS. It is also clear from

(11) thatlα1/lα2 → 1 asnS → ∞ for any fixed 0< α1, α2 < 1. The effect ofα on the width of the

bandlα is of second order. Consequently, using the definition of (12), the limit of the adjustment

value is 1. �

The remaining problem is to find an appropriate estimator ofc. First we did pilot simulation

to look for some properties of the adjustment valuec. The lower bound ofc is obviously 1. We

did simulation for the fixed equal space design using functionm(x) = 2+ sin(2 ∗ π ∗ xi) and tried

different possible upper bound values. The possible upper bounds ofc are summarized in Table

(1). We see from Table (1) that the coverage is close and greater than the nominal level, which

suggests the proposedc values are the possible upper bounds. We also notice thatc decreases as

the sample size increases.
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Given true regression functionm(x), sample sizen andσ, using the definition of (12), we can

find c. In practice, the true regression functionm(x) is generally not available. We definec∗ be

the random variable corresponding to the estimator of the regression function ˆm(x), sample sizen

andσ̂ from the given data. It is expected thatc∗ is close toc. First, we generate random samples

using the estimator of the regression function ˆm(x), sample sizenS andσ̂. Next, set a grid forc

from 1 to an upper bound and perform simulations at each value. The estimator ofc∗ is the value

for which the simulation coverage is closest and greater than or equal to the nominal coverage.

Unfortunately, this process is time consuming and not efficient at all. Hence, Zhang and Lu (2008)

developed a process to estimate the value ofc by incorporating logistic regression model. We

describe this procedure, called procedure 1 as follows.

Given a data set, we estimatem(x) by (3) andσ by (7), saym̂, σ̂. We then generate a number

of samples, say 1000, from ˆm, σ̂ and the fixedxs. Between the lower bound 1 and upper bound of

c, we setci (i = 1,2, ....1000) as equally spaced points. The 1000 differentcis are evaluated at the

1000 different samples respectively, i.e.ci evaluated at samplei. If the confidence band ˆm(x)± cilα

contains the estimator of the regression function, sethi = 1 and otherwise zero. This process will

generate a sequence of binary responseshi(i = 1,2, ....1000). We use the logistic regression model

to fit the data{(hi , ci)} for i = 1,2, . . . , 1000. The estimate ofc is the valueci corresponding to the

probability 100(1-α )%.

4 Simulation Studies

In this section, a small simulation study has been conducted to investigate the performance of the

proposed confidence bands. The simulation set up follows from Harms and Duchesne (2010) and

Zhang and Lu (2008). The following equation is used to generate the population at the super model

stage

yi = 2+ sin(2 ∗ π ∗ xi) + εi , i = 1, ..., 1000, (13)
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where population sizeN = 1000. Random errors are from a normal distribution with mean 0 and

constant varianceσ2. At the sampling design stage, Poisson sampling scheme (unequal probability

design) is considered. The sample weightdi of poisson sampling scheme have been chosen such

that weights are proportional to the auxiliary variablezi = (yi + 2)(xi + 2) and
∑

U 1/di = E(nS) =

n. The simulation study was performed with factors: (1) standard deviationσ : .05 and.1; (2)

nominal levelsα: 0.1 and 0.05; (3) sampling sizes:n = 100 andn = 200; The confidence bands

are investigated under different settings with different sample sizes, variancesσ2 andα levels.

The preferred simulation would generate 1000 samples by Poisson sampling. For each gener-

ated sample, we use procedure 1 to estimate the constantc, sayĉ, to construct the confidence band,

which leads to a success or failure result. However, it takes 2 hours to estimatec using procedure

1. Consequently, we need 10000 hours. Practically speaking, it is impossible to carry out this sim-

ulation. Notice that when the sample size is bigger than 100, ˆm(x) andσ̂ are very close to the true

function andσ. Thec value for estimated settings using ˆm(x) andσ̂ (We defined itc∗ previously)

should be very close to thec value for the true settings. Hence, we did following simulations to

investigate this method.

We use the Epanechnikov kernel for the local linear smoother ˆm(x). Cross-validation method

is used to select the bandwidth and Lu (2014)’s method is used to estimate theσ. The grid of

1000 evenly spaced points in the interval [0,1] is used. We generated 1000 samples by poisson

sampling scheme under each experimental setting and estimatedc by procedure 1. The estimates

of c, calledĉ were given in Table 2. Next, we did 5000 simulations for each experimental setting

using the estimatedc value. The experimental coverage results were shown in Table 3. Notice that

from Table 3, the empirical coverage are very close to nominal level. Hence, we believe logistic

regression model is appropriate to be used here. The simulation we did shows that in practiceĉ∗

from the logistic regression model is very close toc∗, which suggest̂c∗ could be a good estimator

of c whenc∗ is very close toc.
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5 Concluding Remarks

In this paper, we proposed a new method to construct simultaneous confidence bands in nonpara-

metric regression with complex survey data. The local linear smoother (Harms & Duchesne, 2010)

is used to estimate the regression curve. Difference based variance estimator (Lu, 2014) is used to

estimate the variance. Instead of subtracting the estimator of the bias, we expand the confidence

bands by multiplying by an adjustment valuec to account for the bias of the smoother. The con-

fidence bands take the form of ˆm(x) ± c ∗ lα(x), and incorporate both the sampling weights and

the kernel weights. Logistic regression is used to estimate the bias adjustment constantc. The

resulting procedure for constructing confidence bands is entirely data-driven. Simulations show

that the proposed method works very well.
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Table 1: Potential Upper Bound forc, function usedm(x) = 2+ sin(2 ∗ π ∗ xi)

σ Nominal coverage c value Actual cover-
age for nS =

100

c value Actual cover-
age for nS =

200
0.05 0.90 c= 3 0.911 2 0.953
0.05 0.95 c= 4.5 0.952 2 0.972
0.1 0.90 c= 3 0.960 2 0.971
0.1 0.95 c= 3 0.971 2 0.977

Table 2: The Estimates ofc by logistic regression, functionm(x) = 2+ sin(2 ∗ π ∗ xi) is used

ĉ for the followingn:
σ Nominal coverage 100 200

0.05 0.90 2.845619 1.675935
0.05 0.95 4.06597 1.785406
0.1 0.90 2.188657 1.603235
0.1 0.95 2.943163 1.666908

Table 3: Simulation study of coverage under different settings, functionm(x) = 2+ sin(2 ∗ π ∗ xi)
is used

Actual coverage for the followingn:
σ Nominal coverage 100 200

0.05 0.90 0.896 0.890
0.05 0.95 0.946 0.945
0.1 0.90 0.906 0.900
0.1 0.95 0.963 0.942
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