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Abstract

This research is to provide a solution of one-way ANOVA without using transformation

when variances are heteroscedastic and group sizes are unequal. Parametric boothstrap test

(Krishnamoorthy, Lu, & Mathew, 2007) has been shown to be competitive with many other

methods when testing the equality of group means. We extend the parametric bootstrap algo-

rithm to a multiple comparison procedure. Simulation results show that the parametric boot-

strap approach works well for one-way ANOVA.

Key Words: ANOVA, Parametric bootstrap, Multiple comparison, Simulations, Unequal vari-

ance.

1 Introduction

Consider the ANOVA problem of r normal populations with unequal population variances σ2
i ,

i = 1, 2, · · · , r and let Yi1,Yi2, · · · ,Yi,ni be a random sample from N(ui, σ
2
i ). The one-way ANOVA

model is as follows,

Yi j = µ + αi + εi j, (1)

where εi j
iid
∼ N(0, σ2

i ), i = 1, 2, · · · , r, j = 1, 2, · · · , ni. This research intends to provide a solution

of one-way ANOVA: testing equality of the factor level means and all pairwise comparisons under

the assumption of heteroscedastic variances and unequal sizes.

When the population variances are unequal, the classical F test fails to reject the null hypothe-

sis of equal factor level means even for large samples. Many alternative methods were developed

due to this issue. Parametric bootstrap test (Krishnamoorthy et al., 2007) is one of such tests. Yiǧit

and Gokpinar (2010) carried out a simulation study to compare the size performance of the F,

W (Welch, 1951), SS (Scott & Smith, 1971), BF (Brown & Forsythe, 1974), Chen-Chen’s One

Stage (OS) (Chen & Chen, 1998), Chen-Chen’s One Stage Range (OSR) (Chen, 2001), Weera-

handi’s Generalized F (GF) (Weerahandi, 1995), Xu-Wang’s Generalized F (XW) (Xu & Wang,
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2007(a), 2007(b)) and Parametric bootstrap (PB) (Krishnamoorthy et al., 2007) tests when popu-

lation variances are unequal for one-way ANOVA problem. The Type I error rates and powers of

the tests are compared using various sample sizes under various parameter combinations. PB test

is shown to be one of the best for testing the equality of factor level means under the assumption

of heteroscedastic variances.

Another problem in ANOVA is multiple comparisons (all pairwise simultaneous comparisons).

Scheffé’s method, the Bonferroni inequality-based method, and Tukey-Kramer method are widely

used for pairwise comparisons among the group means when variances of sample means are equal.

However, research of multiple comparisons under the assumption of heteroscedasticity is lim-

ited. Hochberg (1976) generalized the Spjφtvoll and Stoline’s procedure (1973) to heterogeneous

variance cases. Games and Howell (1976) presented a method for constructing simultaneous con-

fidence intervals based on the Behrens-Fisher statistic with Welch’s (1948) approximate t solution

for degrees of freedom. Kaiser and Bowden (1983) discussed simultaneous confidence intervals

for all linear contrasts in a one-way ANOVA with unequal variances. The above multiple com-

parison prcedures (MCPs) either involve Studentized range statistics (Einot & Gabriel, 1975) or

alternatively as Student’s t statistics (Games, 1971). Factors such as the degree of variance and

sample size heterogeneity, the shape of the population etc,. can affect the rates of Type I error

and power characteristics. Therefore most of the MCP tests are relatively data pertinent and no

uniformly preferable choice has been reached yet.

In this research, we propose a parametric bootstrap test of multiple comparison for use in one-

way ANOVA under the assumption of heteroscedastic variances and unequal sizes. Research in

this paper together with PB test (Krishnamoorthy et al., 2007) provide a complete solution of the

one-way ANOVA. This paper is organized as follows. In Section 2, we review PB test. In Section

3, we propose parametric bootstrap algorithm of multiple comparison for one-way ANOVA. In

Section 4, we present simulation studies. Section 5 gives conclusions.

3
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ew
 M

ex
ic

o]
 a

t 2
1:

00
 1

5 
A

ug
us

t 2
01

4 



ACCEPTED MANUSCRIPT

2 The Parametric Bootstrap Test for Population Means

In applied statistics an experimenter wants to compare two or more populations, i.e.

H0 : α1 = α2 = · · · = αr = 0 v.s. Hα : at least one αi , 0. (2)

The classical F test fails to reject the null hypothesis even for large samples when the population

variances are unequal. Many alternative methods are developed due to this issue. In this section,

we review the PB test suggested by Krishnamoorthy et al. (2007).

Assume σ2
i are unknown, a natural test statistic is the standardized between group sum of

squares

TN(S 2
1, · · · , S

2
r ) =

r∑
i=1

ni

S 2
i

Ȳ2
i −

(
r∑

i=1
niȲi/S 2

i )2

r∑
i=1

ni/S 2
i

, (3)

where Ȳi =
∑ni

j=1 Yi j/ni and S 2
i =

∑ni
j=1(Yi j − Ȳi)2/(ni − 1). The test rejects H0 in (2) when

TN(σ2
1, · · · , σ

2
r ) > χ2

r−1,α with χ2
r−1,α the upper αth quantile of a chi-square distribution with de-

grees of freedom r − 1. The PB pivot variable can be obtained by replacing Ȳi, S 2
i in (3) by ȲBi , S

2
Bi

with ȲBi ∼ N(0, S 2
i /ni) and S 2

Bi
∼ S 2

i χ
2
ni−1/(ni−1), i = 1, · · · , r. Let Zi be a standard normal random

variable. The PB pivot variable has the same distribution as

TNB(S 2
1, · · · , S

2
r ) =

r∑
i=1

Z2
i (ni − 1)
χ2

ni−1

−

(
r∑

i=1

√
niZi(ni − 1)/S iχ

2
ni−1)2

r∑
i=1

ni(ni − 1)/S 2
i χ

2
ni−1

. (4)

Krishnamoorthy et al. (2007) suggested generating a simulated distribution of TN using (4) to

estimate the p-value of T ∗N (test statistic derived using (3)). The following is the procedure:

Algorithm 1

For a given (n1, · · · , nr), (ȳ1, · · · , ȳr) of (Ȳ1, · · · , Ȳr) and (s2
1, · · · , s

2
r ) of (S 2

1, · · · , S
2
r ):

compute TN(s2
1, · · · , s

2
r ) using (3), label it as T ∗N

For l = 1, · · · , L

4
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generate Zi ∼ N(0, 1) and χ2
ni−1, i = 1, · · · , r

compute TNB(s2
1, · · · , s

2
r ) using (4)

if TNB(s2
1, · · · , s

2
r ) > T ∗N , set Ql = 1

(end loop)∑L
l=1 Ql/L is a Monte Carlo estimate of the p-value of T ∗N .

3 The Parametric Bootstrap Method for Multiple Comparison

with Heteroscedastic Variances

The multiple comparison procedure applies when the family of interest is the set of all pairwise

comparisons of factor level means; in other words, the family consists of estimates of all tests of

the form

H0 : µi − µ j = 0 v.s. Hα : µi − µ j , 0. (5)

When all σ2
i ’s are equal, the Tukey’s multiple comparison confidence limits for all pairwise com-

parisons D = µi − µ j with family confidence coefficient of at least 1 − α are D̂ ± q(α)S (D̂),

where q(α) is the upper αth quantile of the studentized range distribution, S 2(D̂) =
∑r

i=1
∑ni

j=1(Yi j −

Ȳi)2/
[
(n − r)(1/ni + 1/n j)

]
and n =

∑r
i=1 ni. However, Tukey’s method fails to work when the pop-

ulation variances are unequal. In the following, we propose a parametric bootstrap method for

multiple comparison procedure for use under heteroscedastic variances.

Recall that in Section 2, ȲBi ∼ N(0, S 2
i /ni) and S 2

Bi
∼ S 2

i χ
2
ni−1/(ni − 1), i = 1, · · · , r. Hence

ȲBi

d
= Zi(S i/

√
ni) and S 2

Bi

d
=

S 2
i

ni − 1
χ2

ni−1, where d
= means the same distribution. Let qi j = |ȲBi − ȲB j |/√

S 2
Bi
/ni + S 2

B j
/n j. qi j has the same distribution as

qi j
d
=

|Zi(
S i
√

ni
) − Z j(

S j
√n j

)|√
S 2

i

ni(ni − 1)
χ2

ni−1 +
S 2

j

n j(n j − 1)
χ2

ni−1

, for i < j, i, j = 1, 2, · · · , r. (6)
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For a given (n1, · · · , nr), (ȳ1, · · · , ȳr) and s2
1, · · · , s

2
r , let

q0
i j = |ȳi − ȳ j|/

√
s2

i /ni + s2
j/n j for i = 1, · · · , r − 1, j = i + 1, · · · , r. (7)

Given a significance level α, the multiple comparison confidence limits for simultaneous compar-

isons µi − µ j with family confidence coefficient at least 1−α are ȳi − ȳ j ± qα
√

s2
i /ni + s2

j/n j, where

qα can be estimated using parametric bootstrap method given in Algorithm 2.

Algorithm 2.

For a given (n1, · · · , nr), (ȳ1, · · · , ȳr) and (s2
1, · · · , s

2
r ):

For l = 1, · · · , L

Generate Zi ∼ N(0, 1) and χ2
ni−1, i = 1, · · · , r

Compute qi j using (6) for i = 1, · · · , r − 1, j = i + 1, · · · , r

Find ql = max(qi j)

(end loop)

qα is the 1 − α percentile of the simulated distribution of q

4 Simulations

In this section, we use simulation to study the overall test and multiple comparisons of one-way

ANOVA model using parametric bootstrap under the assumption of heteroscedastic variances and

unequal sizes. The simulation settings follow from Krishnamoorthy et al. (2007) and Yiǧit and

Gokpinar (2010).

The tests we consider are location-scale invariant. Without loss of generality, we take µ1 =

· · · = µr = 0, σ2
1 = 1 and 0 < σ2

i < 1, for i = 2, · · · , r in our simulation studies. The sample

statistics ȳi and s2
i are generated independently as ȳi ∼ N(0, σ2

i /ni) and s2
i ∼ σ

2χ2
ni−1/(ni − 1), with

0 < σ2
i < 1, i = 2, · · · , r.

The simulation study was performed with factors: (1) population standard deviation σ =

(σ1, · · · , σr): various combinations; (2) number of levels r: r = 3 and r = 10; (3) Significance
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level α: .01, .05 and .1; (4) group sizes n = (n1, · · · , nr): various combinations. For a given sample

size and parameter configuration, we generated 2500 observed vectors (ȳ1, · · · , ȳr, s2
1, · · · , s

2
r ) and

used 5000 runs to estimate the p-value. Algorithm 1 is used to estimate the p-value of overall test

(2). The following is used to derive p-value of simultaneous tests (5): (a) calculate q0
m = max(q0

i j)

using (7), use Algorithm 2 to find qα, the 1 − α percentile of the simulated distribution of qm; (b)

repeat step (a) for 2500 times, p-value is the proportion of the 2500 simulations when q0
m > qα.

Table 1 and Table 2 give the simulation results. From Table 1 and Table 2, we can see that the

actual levels of overall test and multiple comparison procedure are close to the nominal levels.

5 Conclusions

Parametric bootstrap approach (Krishnamoorthy et al., 2007) for testing the equality of several

means under the assumption of heteroscedastic variances has been extended to a multiple compar-

ison procedure. Therefore, a complete study of one-way ANOVA under heteroscedastic variances

and unequal sizes from parametric bootstrap approach without using transformations is derived.

Simulation studies show that the Type I error of overall test and multiple comparison procedure

are close to the nominal level.
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Yiǧit, E., & Gokpinar, F. (2010). A simulation study on tests for one-way anova under the unequal

variance assumption. Commun.Fac.Sci.Univ.Series A, 59(2), 15–34.

9
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ew
 M

ex
ic

o]
 a

t 2
1:

00
 1

5 
A

ug
us

t 2
01

4 



ACCEPTED MANUSCRIPT

Table 1: Simulation result 1: n is a vector of unequal group sizes; σ is a vector of unequal vari-
ances; “Overall” means PB test (Krishnamoorthy et al., 2007) for equality of group means; “MCP”
is parametric bootstrap multiple comparison procedure (proposed method); Numbers in Table are
simulated p-values.

α = .01 α = .05 α = .1
n σ Overall MCP Overall MCP Overall MCP

(3,5,7) (1,1,1) .0155 .0125 .0595 .063 .0970 .1005
(4,4,4) .0135 .0110 .0485 .0525 .1045 .1145
(1,2,4) .0075 .0070 .0400 .0515 .0915 .095
(1,4,9) .0120 .0100 .0500 .0545 .109 .0965
(4,2,1) .0300 .0285 .0715 .0685 .1150 .1095
(9,4,1) .0275 .0270 .0685 .063 .1200 .1155

(7,10,13) (1,1,1) .0065 .0120 .0455 .0445 .1005 .0920
(4,4,4) .0115 .0075 .0515 .0520 .0975 .0960
(1,2,4) .007 .0085 .0515 .0485 .090 .1040
(1,4,9) .0075 .0095 .046 .0535 .0975 .1000
(4,2,1) .012 .0145 .0515 .0555 .1125 .0985
(9,4,1) .011 .0095 .0505 .0490 .1025 .1080

Table 2: Simulation result 2: n is a vector of unequal group sizes; σ is a vector of unequal vari-
ances; “Overall” means PB test (Krishnamoorthy et al., 2007) for equality of group means; “MCP”
is parametric bootstrap multiple comparison procedure (proposed method); Numbers in Table are
simulated p-values.

n = (3, 3, 3, 4, 4, 4, 5, 5, 5, 5) α = .01 α = .05 α = .1
σ Overall MCP Overall MCP Overall MCP

(1, 1, · · · , 1) .0035 .004 .038 .0285 .083 .0725
(4, 4, · · · , 4) .0045 .005 .044 .0395 .0855 .084

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) .0055 .0085 .039 .0385 .087 .0775
(1,1,1,4,4,4,9,9,9,9) .007 .007 .035 .0355 .089 .086
(9,9,9,4,4,4,1,1,1,1) .015 .009 .066 .054 .0875 .097

(10,9,8,7,6,5,4,3,2,1) .014 .014 .069 .056 .106 .105
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