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a b s t r a c t

The class of Generalized Additive Models (GAMs) is a powerful tool which has been well
studied. It helps to identify additive regression structure that can be determined even
more sharply via test procedureswhen some component functions have a parametric form.
Generalized Additive Partially Linear Models (GAPLMs) enjoy the simplicity of GLMs and
the flexibility of GAMs because they combine both parametric and nonparametric com-
ponents. We use the hybrid spline-backfitted kernel estimation method, which combines
the best features of both spline and kernel methods, to make fast, efficient and reliable
estimation under an α-mixing condition. In addition, simultaneous confidence corridors
(SCCs) for testing overall trends and empirical likelihood confidence regions for parameters
are provided under an independence condition. The asymptotic properties are obtained
and simulation results support the theoretical properties. As an illustration, we use GAPLM
methodology to improve the accuracy ratio of the default predictions for 19,610 German
companies. The quantlet for this paper are available on https://github.com.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The class of Generalized Additive Models (GAMs) provides an effective semiparametric regression tool for high-
dimensional data; see [6]. For a response Y and a predictor vector X = (X1, . . . , Xd)⊤, the pdf of Yi conditional on Xi with
respect to a fixed σ -finite measure is from an exponential family, viz.

f (Yi | Xi, φ) = exp [{Yim (Xi) − b {m (Xi)}} /a (φ) + h (Yi, φ)] .

The function b is a given function which relates m (x) to the conditional variance function σ 2 (x) = var (Y | X = x) via the
equation σ 2 (x) = a (φ) b′′ {m (x)}, in which a (φ) is a nuisance parameter that quantifies overdispersion. For theoretical
developments, it is not necessary to assume that the data (Y1,X⊤

1 ), . . . , (Yn,X⊤
n ) come from such an exponential family, but

only that the conditional mean and variance are linked by the relation

var (Y | X = x) = a (φ) b′′
[(b′)−1

{E(Y | X = x)}].
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More specifically, the model is

E (Y | X) = b′

{
c +

d∑
α=1

mα(Xα)

}
, (1)

where b′ is the derivative of function b. Model ((1) ) can be used, e.g., in scoringmethods and analyzing default of companies;
here Y = 1 denotes default and b′

= ey/1 + ey is the link function. Fitting Model (1) to such a default data set leads
to estimated component functions m̂1, . . . , m̂d; see, e.g., [11,25]. Plotting these functions with simultaneous confidence
corridors (SCCs) as developed by [25], one can check the functional form and therefore obtain simpler parameterizations
ofm1, . . . ,md.

The typical approach is to perform a preliminary (nonparametric) analysis on the influence of the component functions,
and onemay improve themodel by introducing parametric components. This will lead to simplification, more interpretabil-
ity andhigher precision in statistical calibration.With these thoughts inmind, GAMs can be extended toGeneralizedAdditive
Partially Linear Models (GAPLM), in which

E (Y | T,X) = b′
{m (T,X)} , (2)

with m (T,X) = β⊤T +
∑d2

α=1mα(Xα), β = (β0, . . . , βd1 )
⊤, T =

(
T0, . . . , Td1

)⊤, and X =
(
X1, . . . , Xd2

)⊤, where T0 = 1 and
Tk ∈ R for all k ∈ {1, . . . , d1}. In this paper, we assume that

var (Y | T = t,X = x) = a (φ) b′′
[
(
b′

)−1
{E (Y | T = t,X = x)}].

Wecanwrite (2) in theusual regression formYi = b′ {m (Ti,Xi)}+σ (Ti,Xi) εi withwhite noise εi that satisfies E (εi | Ti,Xi) =

0, E(ε2
i | Ti,Xi) = 1. For identifiability, we impose the condition

∀α∈{1,...,d2} E {mα(Xα)} = 0. (3)

As in most works on nonparametric smoothing, estimation of the functions m1, . . . ,md2 is conducted on compact sets.
Without loss of generality, let the compact set be ~ = [0, 1]d2 .

Some estimation methods for Model (2) have been proposed, but are either computationally expensive or lacking
theoretical justification. The kernel-based backfitting andmarginal integrationmethods, e.g., in [5,9,24], are computationally
expensive. More advanced non- and semi-parametric models (without link function) have also been studied, e.g., partially
linearmodels and varying-coefficientmodels; see [10,14,16,20,23]. In [20], a nonconcave penalized quasi-likelihoodmethod
was proposed with polynomial spline smoothing for estimation of m1, . . . ,md2 , and deriving quasi-likelihood based
estimators for the linear parameter β ∈ R1+d1 .

To our knowledge, [20] is a pilot paper since it establishes the asymptotic normality of the estimators for the parametric
components in GAPLMs with independent observations. However, the asymptotic normality of the estimators of the
nonparametric component functions m1, . . . ,md2 and SCCs remains to be proved. Recently, [12] studied more complicated
Generalized Additive Coefficient Models by using a two-step spline method, but an iid assumption is required for the
asymptotic properties of the estimation and inference of mα , and the asymptotic normality of parameter estimates has
not been shown either. Nonparametric analysis of deviance tools was developed in [4], which can be used to test the
significance of the nonparametric term in generalized partially linear models with univariate nonparametric component
function. Empirical likelihood based confidence regions for the parameter β and point-wise confidence intervals for the
nonparametric term in generalized partially linear models were also provided in [8].

The spline-backfitted kernel (SBK) estimation introduced in [21] combines the advantages of both kernel and spline
methods and the result is balanced in terms of theory, computation, and interpretation. The basic idea is to pre-smooth
the component functions by spline estimation and then use the kernel method to improve the accuracy of the estimation on
a specificmα . In this paper, we extend the SBK method to calibrate Model (2) with additive nonparametric components and
as a result, we obtain oracle efficiency and asymptotic normality of the estimators for both the parametric and nonparametric
components under α- mixing condition, which complicates the derivation of theoretical properties. With the stronger iid
assumption, we provide an empirical likelihood (EL) based confidence region for the parameterβ due to the advantages of EL
such as increase in coverage accuracy, easy implementation, avoiding estimating variances and Studentizing automatically;
see [8]. In addition,weprovide SCCs for the nonparametric component functions based on themaximal deviation distribution
in [2], so that one can test the hypothesis of the shape for nonparametric terms.

The paper is organized as follows. In Section 2, we discuss the details of (2). In Section 3, the oracle estimator and
its asymptotic properties are introduced. In Section 4, the SBK estimator is introduced and the asymptotics for both the
parametric and nonparametric component estimations is given. In addition, SCCs for testing overall trends and entire shapes
are considered. In Section 5, we apply the methods to simulated and real data examples. All technical proofs are given in
Appendix.
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2. Model assumptions

The space of α-centered square integrable functions on [0, 1] is defined as in [18], viz.

H0
α = {g : E{g(Xα)} = 0, E{g2(Xα)} < ∞}.

Next define the model space M, a collection of functions on Rd2 as

M =

{
g (x) =

d2∑
α=1

gα(x) : gα ∈ H0
α

}
.

The constraints that E {gα(Xα)} = 0 for allα ∈ {1, . . . , d2} ensure theunique additive representation ofmα as expressed in (3).
Denote the empirical expectation by En, i.e., En(ϕ) =

∑n
i=1ϕ (Xi) /n. For functions g1, g2 ∈ M, the theoretical and empirical

inner products are defined respectively as ⟨g1, g2⟩ = E {g1 (X) g2 (X)}, ⟨g1, g2⟩n = En {g1 (X) g2 (X)}. The corresponding
induced norms are ∥g1∥2

2 = E{g2
1 (X)}, ∥g1∥2

2,n = En{g2
1 (X)}. More generally, we set ∥g∥

r
r = E|{g (X) |

r
}.

In the paper, for any compact interval [a, b], we denote the space of pth order smooth functions as C (p)[a, b] = {g : g (p) ∈

C [a, b]}, and the class of Lipschitz continuous functions for constant C > 0 as

Lip ([a, b] , C) = {g : ∀x,x′∈[a,b] |g (x) − g
(
x′
)
| ≤ C |x − x′

|}.

For any vector x = (x1, . . . , xd)⊤, we denote the supremum and p norm as |x| = max1≤α≤d |xα| and ∥x∥p = (
∑d

α=1x
p
α)

1/p,
respectively. In particular, we use ∥x∥ to denote the Euclidean norm, i.e., p = 2. We need the following assumptions.

(A1) For every α ∈ {1, . . . , d2}, one has mα ∈ C (1)[0, 1]; furthermore, m1 ∈ C (2) [0, 1] and there exists a constant Cm > 0
such that, for all α ∈ {2, . . . , d2}, m′

α ∈ Lip ([0, 1] , Cm).
(A2) The inverse link function b′ satisfies b′

∈ C2 (R) , b′′ (θ) > 0, θ ∈ R and Cb > maxθ∈Θb′′ (θ) ≥ minθ∈Θb′′ (θ) > cb for
constants Cb > cb > 0.

(A3) The conditional variance function σ 2 (x) is measurable and bounded. The errors ϵ1, . . . , ϵn are such that E(εi | Fi) = 0,
E(|εi|2+η) ≤ Cη for some η ∈ (1/2, ∞) with the sequence of σ -fields: Fi = σ {(Xj) : j ≤ i, εj, j ≤ i − 1} for all
i ∈ {1, . . . , n}.

(A4) The density function f of
(
X1, . . . , Xd2

)
is continuous and 0 < cf ≤ infx∈χf (x) ≤ supx∈~ f (x) ≤ Cf < ∞. Themarginal

densities fα of Xα have continuous derivatives on [0, 1] and are uniformly bounded from above by Cf and from below
by cf .

(A5) There exist constants K0, λ0 ∈ (0, +∞) such that α (n) ≤ K0e−λ0n holds for all n ∈ N, with the α-mixing coefficients
for the sequence Z1 = (T⊤

1 ,X⊤

1 , ε1)⊤, . . . , Zn = (T⊤
n ,X⊤

n , εi)⊤ defined, for every integer k ≥ 1, by

α (k) = supB∈σ {Zs,s≤t},C∈σ {Zs,s≥t+k} |Pr (B ∩ C) − Pr (B) Pr (C)| .

(A5’) The variables Z1, . . . , Zn are mutually independent and identically distributed.
(A6) There exist constants 0 < cδ < Cδ < ∞ and 0 < cQ < CQ < ∞ such that cδ ≤ E(|Tk|2+δ

| X = x) ≤ Cδ for some
δ > 0, and cQId1×d1 ≤ E

(
TT⊤

| X = x
)

≤ CQId1×d1 .

Assumptions (A1), (A2) and (A4) are standard in the GAM literature; see [19,22]. Assumptions (A3) and (A5) are the same
for weakly dependent data as in [11,21], and Assumption (A6) is the same with (C5) in [20]. When categorical predictors are
present, we can create dummy variables in Ti and Assumption (A6) is still satisfied.

3. Oracle estimators

The aim of our analysis is to provide precise estimators for the component functionsmα and parameters β. Without loss
of generality, wemay focus onm1. If all the unknownβ and otherm2, . . . ,md2 were known,we are in a comfortable situation
since the multidimensional modeling problem has reduced to one dimension. As in [17] define, for each x1 ∈ [h, 1 − h] and
a ∈ A, a local quasi log-likelihood function

ℓ̃m1 (a, x1) =
1
n

n∑
i=1

[Yi {a + m (Ti,Xi_1)} − b {a + m (Ti,Xi_1)}] Kh (Xi1 − x1)

with m (Ti,Xi_1) = β⊤Ti +
∑d2

α=2mα (Xiα) and Kh (u) = K (u/h) /h a kernel function K with bandwidth h satisfying the
following condition.

(A7) The kernel function K ∈ C1
[−1, 1] is a symmetric pdf and h = hn satisfies h = O{n−1/5(ln n)−1/5

}, h−1
=

O{n1/5(ln n)δ} for some constant δ > 1/5.
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Since all the β and m2, . . . ,md2 are known as obtained from the oracle, one can obtain the so-called oracle estimator

m̃K ,1(x1) = argmaxa∈Aℓ̃m1 (a, x1) . (4)

Denote ∥K∥
2
2 =

∫
K 2 (u) du, µ2 (K ) =

∫
K (u) u2du and introduce the scale function

D1(x1) = f1(x1)E
{
b′′

{m (T,X)} | X1 = x1
}
, (5)

and the bias function

bias1(x1) = µ2 (K )
[
m′′

1(x1)f1(x1)E
[
b′′

{m (T,X)} | X1 = x1
]

+m′

1(x1)
∂

∂x1

{
f1(x1)E

[
b′′

{m (T,X)} | X1 = x1
]}

−
{
m′

1(x1)
}2f1(x1)E

[
b′′′

{m (T,X)} | X1 = x1
]]

. (6)

Lemma 1. Under Assumptions (A1)–(A7), for any x1 ∈ [h, 1 − h], as n → ∞, the oracle kernel estimator m̃K,1(x1) given in (4)
satisfies

supx1∈[h,1−h]|m̃K,1(x1) − m1(x1)| = Oa.s.(ln n/
√
nh),

√
nh {m̃K,1(x1) − m1 (x1) − bias1(x1)h2/D1(x1)} ⇝ N [0,D1(x1)−1v2

1(x1)D1(x1)−1
],

with v2
1(x1) = f1(x1)E{σ 2 (T,X) | X1 = x1} ∥K∥

2
2.

Lemma 1 is proved in [11]. The above oracle idea applies to the parametric part as well. Define the log-likelihood function

ℓ̃β (a) =
1
n

n∑
i=1

[Yi{a⊤Ti + m (Xi)} − b{a⊤Ti + m (Xi)}], (7)

wherem (Xi) =
∑d2

α=1mα (Xiα). The infeasible estimator of β is β̃ = argmaxa∈R1+d1 ℓ̃β (a). Clearly, ∇ℓ̃β (β) = 0. To maximize
(7), we have

1
n

n∑
i=1

[YiTi − b′
{a⊤Ti + m (Xi)}Ti] = 0,

then the empirical likelihood ratio is

R̃ (a) = max

{
n∏

i=1

npi :

n∑
i=1

piZi (a) = 0, pi ≥ 0,
n∑

i=1

pi = 1

}
where Zi (a) =

[
Yi − b′

{
a⊤Ti + m (Xi)

}]
Ti.

Theorem 1. (i) Under Assumptions (A1)–(A6), as n → ∞,⏐⏐⏐β̃ − β − [Eb′′
{m (T,X)} TT⊤

]
−1 1

n

n∑
i=1

σ (Ti,Xi) εiTi

⏐⏐⏐ = Oa.s.{(ln n)2/n},

√
n (β̃ − β) ⇝ N

[
0, a (φ) [Eb′′

{m (T,X)} TT⊤
]
−1] .

(ii) Under Assumptions (A1)–(A4), (A5’) and (A6), −2 ln{R̃ (β)} ⇝ χ2
d1

.

Although the oracle estimators β̃ and m̃K ,1(x1) enjoy the desirable theoretical properties in Theorem 1 and Lemma 1, they
are not feasible statistics as their computation is based on the knowledge of unavailable component functionsm2, . . . ,md2 .

4. Spline-backfitted kernel estimators

In practice, m2, . . . ,md2 are of course unknown and need to be approximated. We obtain the spline-backfitted kernel
estimators by using estimations of m2, . . . ,md2 and the unknown β by splines and we employ them to estimate m1(x1) as
in (4). First, we introduce the linear spline basis as in [10]. Let 0 = ξ0 < ξ1 < · · · < ξN < ξN+1 = 1 denote a sequence of
equally spaced points, called interior knots, on [0, 1]. Denote by H = 1/(N + 1) the width of each subinterval

[
ξJ , ξJ+1

]
for

each j ∈ {0, . . . ,N} and denote the degenerate knots ξ−1 = 0, ξN+2 = 1. We need the following assumption.

(A8) The number of interior knots N ∼ n1/4 ln n, i.e., cNn1/4 ln n ≤ N ≤ CNn1/4 ln n for some constants cN , CN > 0.
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Following [11], for each j ∈ {0, . . . ,N}, define the linear B-spline basis as follows:

bJ (x) = (1 − |x − ξJ |/H)+ =

{
(N + 1) x − J + 1
J + 1 − (N + 1) x

0

if ξJ−1 ≤ x ≤ ξJ ,

if ξJ ≤ x ≤ ξJ+1,

otherwise.

Let also the space of α-empirically centered linear spline functions on [0, 1] be defined, for each α ∈ {1, . . . , d2}, as

G0
n,α =

⎧⎨⎩gα : gα(Xα) =

N+1∑
J=0

λJbJ (Xα), En {gα(Xα)} = 0

⎫⎬⎭ ,

and let the space of additive spline functions on χ be

G0
n =

{
g (x) =

d2∑
α=1

gα(Xα) : gα ∈ G0
n,α

}
.

Define the log-likelihood function be given, for any g ∈ G0
n, by

L̂ (β,g) =
1
n

n∑
i=1

[Yi{β
⊤Ti + g(Xi)} − b{β⊤Ti + g (Xi)}], (8)

which according to Lemma 14 of [19], has a unique maximizer with probability approaching 1. The multivariate function
m (x) is then estimated by the additive spline function m̂ (x) with

m̂ (t, x) = β̂
⊤

t + m̂ (x) = argmaxg∈G0n
L̂ (β,g) .

Since m̂ (x) ∈ G0
n, one can write m̂ (x) =

∑d2
α=1m̂α (xα) for m̂α(Xα) ∈ G0

n,α . Next define the log-likelihood function

ℓ̂m1 (a, x1) =
1
n

n∑
i=1

[
Yi

{
a + m̂ (Ti,Xi_1)

}
− b

{
a + m̂ (Ti,Xi_1)

}]
Kh(Xi1 − x1), (9)

where m̂ (Ti,Xi_1) = β̂
⊤

Ti +
∑d2

α=2m̂α (Xiα). Define the SBK estimator as

m̂SBK,1(x1) = argmaxa∈Aℓ̂m1 (a, x1) . (10)

Theorem 2. Under Assumptions (A1)–(A8), as n → ∞ , m̂SBK,1(x1) is oracally efficient,

supx1∈[0,1]|m̂SBK,1 (x1) − m̃K ,1(x1)| = Oa.s.(n−1/2 ln n).

The following corollary is a consequence of Lemma 1 and Theorem 2.

Corollary 1. Under Assumptions (A1)–(A8), as n → ∞, the SBK estimator m̂SBK,1(x1) given in (10) satisfies

supx1∈[h,1−h]|m̂SBK,1(x1) − m1(x1)| = Oa.s.(ln n/
√
nh)

and for any x1 ∈ [h, 1 − h], with bias1(x1) as in (6) and D1(x1) in (5)
√
nh {m̂SBK,1(x1) − m1(x1) − bias1(x1)h2/D1(x1)} ⇝ N [0,D1(x1)−1v2

1(x1)D1(x1)−1
].

Denote ah =
√

−2ln,h, C (K ) =
K ′

2
2 ∥K∥

−2
2 and for any α ∈ (0, 1), the quantile

Qh(α) = ah + a−1
h [ln{

√
C (K )/(2π)} − ln{− ln

√
1 − α}].

Also with D1(x1) and v2
1(x1) given in (5), define σn(x1) = n−1/2h−1/2v1(x1)D−1

1 (x1).

Theorem 3. Under Assumptions (A1)–(A4), (A5’), (A6)–(A8), as n → ∞,

lim
n→∞

Pr
{
supx1∈[h,1−h]

⏐⏐m̂SBK,1(x1) − m1 (x1)
⏐⏐ /σn(x1) ≤ Qh (α)

}
= 1 − α.

A 100 × (1 − α) % simultaneous confidence band for m1(x1) is m̂SBK,1(x1) ± σn(x1)Qh (α) .

In fact, β̂ obtained by maximizing (8) is equivalent to β̂SBK = argmaxa∈R1+d1 ℓ̂β (a) with

ℓ̂β (a) =
1
n

n∑
i=1

[Yi{a⊤Ti + m̂(Xi)} − b{a⊤Ti + m̂(Xi)}]
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in which m̂ (Xi) =
∑d2

α=1m̂α (Xiα). The empirical likelihood ratio is

R̂ (a) = max

{
n∏

i=1

npi :

n∑
i=1

piẐi (a) = 0, p1 ≥ 0, . . . , pn ≥ 0,
n∑

i=1

pi = 1

}
where Ẑi (a) =

[
Yi − b′

{
a⊤Ti + m̂ (Xi)

}]
Ti. Similar to Theorem 2, the main result shows that the difference between β̂ and

its infeasible counterpart β̃ is asymptotically negligible.

Theorem 4. (i) Under Assumptions (A1)–(A6) and (A8), as n → ∞, β̂ is oracally efficient, i.e.,
√
n (β̂k − β̃k)

p
→ 0 for all

k ∈ {0, . . . , d1} and hence
√
n (β̂ − β) ⇝ N [0, a (φ) [Eb′′

{m (T,X)} TT⊤
]
−1

].

(ii) Under Assumptions (A1)–(A4), (A5’), (A6) and (A8), as n → ∞, sup|−2 ln R̂ (β) + 2 ln R̃ (β)| = Op (1) , and hence
−2 ln{R̂(β)} ⇝ χ2

d1
.

As a reviewer pointed out, an obvious advantage of GAPLM over GAM is the capability of including categorical predictors.
Since mα is not a function of T in GAPLM, we can simply create dummy variables to represent the categorical effects and
use spline estimation. [13] proposed spline estimation combined with categorical kernel functions to handle the case when
functionmα depends on categorical predictors.

5. Examples

We have applied the SBK procedure to both simulated (Example 1) and real (Example 2) data and implemented our
algorithms with the following rule-of-thumb number of interior knots

N = Nn = min(⌊n1/4 ln n⌋ + 1, ⌊n/4d − 1/d⌋ − 1),

which satisfies (A8), i.e., N = Nn ∼ n1/4 ln n, and ensures that the number of parameters in the linear least squares problem
is less than n/4, i.e., 1 + d (N + 1) ≤ n/4. The bandwidth of hα is computed as in [11] in an asymptotically optimal way.

5.1. Example 1

The data are generated from the model

Pr(Y = 1 | T = t,X = x) = b′

{
β⊤T +

d2∑
α=1

mα(Xα)

}
, b′ (x) =

ex

1 + ex

with d1 = 2, d2 = 5, β = (β0, β1, β2)
⊤

= (1, 1, 1, )⊤,m1 (x) = m2 (x) = m3 (x) = sin (2πx), m4 (x) = Φ (6x − 3) − 0.5
and m5 (x) = x2 − 1/3, where Φ is the standard normal cdf. The predictors are generated by transforming the following
vector autoregression (VAR) equation for 0 ≤ r1, r2 < 1 and all i ∈ {1, . . . , n}, viz. Z0 = 0, and

Zi = r1Zi−1 + εi, εi ∼ N (0, Σ) , Σ = (1 − r2) Id×d + r21d1⊤

d , d = d1 + d2,

Ti =
(
1, Zi1, . . . , Zid1 ,

)⊤
, Xiα = Φ

(√
1 − r21Ziα

)
, 1 + d1 ≤ α ≤ d1 + d2,

with stationary Zi = (Zi1, . . . , Zid)⊤ ∼ N [0, (1 − r21 )
−1Σ], 1d = (1, . . . , 1)⊤ and Id×d is the d × d identity matrix. The X is

transformed from Z to satisfy Assumption (A4). In this study, we selected four scenarios: (a) r1 = 0 , r2 = 0; (b) r1 = 0.5,
r2 = 0; (c) r1 = 0, r2 = 0.5; (d) r1 = 0.5, r2 = 0.5. The parameter r1 controls the dependence between observations and r2
controls the correlation between variables. In the selected scenarios, r1 = 0 indicates independent observations and r1 = 0.5
α-mixing observations, r2 = 0 indicates independent variables and r2 = 0.5 correlated variables within each observation.
Define the empirical relative efficiency of β̂1 with respect to β̃1 as EFFr (β̂1) = { MSE(β̃1)/MSE(β̂1)}1/2.

Table 1 shows the mean of bias, variances, MSEs and EFFs of β̂1 for R = 1000 with sample sizes n ∈ {500, 1000,
2000, 4000}. The results show that the estimator works as the asymptotic theory indicates, see Theorem 4(i).

Fig. 1 shows the kernel densities of β̂1s for n ∈ {500, 1000, 2000, 4000} from 1000 replications, again the theoretical
properties are supported.

Table 2 shows the simulation results of the empirical likelihood confidence interval for β with n ∈ {500, 1000,
2000, 4000}, and r1 = 0,r2 = 0 from 1000 replications. Themean and standard deviation of−2 ln{R̂ (β)}+2 ln R̃{(β)} (DIFF)
support the oracle efficiency in Theorem 4 (ii). The performance of empirical likelihood confidence interval are compared
with the wald-type one and it is clear that they have similar performance but empirical likelihood confidence interval has
better coverage ratio and shorter average length.

Next for α ∈ {1, . . . , 5}, let X i
α,min, X

i
α,max denote the smallest and largest observations of the variable Xα in the ith

replication, respectively. The component functions m1, . . . ,m5 are estimated on equally spaced points such that 0 = x0 <



R. Liu et al. / Journal of Multivariate Analysis 162 (2017) 1–15 7

Table 1
The mean of 10 × bias, 100 × variances, 100 × MSEs and EFFs of β̂1 from 1000 replications.

r n 10 × BIAS 100 × VARIANCE 100 × MSE EFF
(
β̂1

)
r1 = 0
r2 = 0

500
1000
2000
4000

1.509
0.727
0.408
0.240

2.018
1.197
0.626
0.282

4.298
1.726
0.793
0.339

0.8436
0.8749
0.9189
0.9534

r1 = 0.5
r2 = 0

500
1000
2000
4000

1.473
0.834
0.476
0.260

3.136
1.287
0.674
0.202

5.306
1.983
0.901
0.270

0.8392
0.8873
0.9294
0.9665

r1 = 0
r2 = 0.5

500
1000
2000
4000

1.327
0.699
0.665
0.390

3.880
1.851
0.739
0.290

5.642
2.339
1.182
0.442

0.8475
0.8856
0.9353
0.9479

r1 = 0.5
r2 = 0.5

500
1000
2000
4000

1.635
0.901
0.529
0.209

4.230
1.190
0.806
0.366

6.903
2.002
1.086
0.410

0.8203
0.8758
0.9304
0.9483

Table 2
Coverage ratios and average length of the empirical likelihood confidence interval (EL) and Wald-type confidence interval for β1 for n =

500, 1000, 2000, 4000 with r1 = 0 from 1000 replications. DIFF= −2 ln{R̂ (β)} + 2 ln{R̃ (β)} is the difference between −2 ln{R̂ (β)} and −2 ln{R̃ (β)}.

n = 500 n = 1000 n = 2000 n = 4000

Coverage ratio EL
Wald

0.923
0.918

0.941
0.934

0.946
0.944

0.951
0.948

Average length EL
Wald

1.2675
1.4073

0.9474
1.0447

0.7105
0.7480

0.5339
0.5625

DIFF MEAN
SD

0.1213
0.5199

0.1023
0.4703

0.0981
0.3667

0.0726
0.3242

· · · < x100 = 1 and the estimator of mα in the rth sample as m̂SBK,α,r . The (mean) average squared errors (ASE and MASE)
are:

ASE(m̂SBK,α,r ) =
1

101

100∑
t=0

{
m̂SBK,α,r (xt ) − mα(xt )

}2
,

MASE(m̂SBK,α) =
1
R

R∑
r=1

ASE(m̂SBK,α,r ).

In order to examine the efficiency of m̂SBK,α relative to the oracle estimator m̃K ,α (xα), both are computed using the same
data-driven bandwidth ĥα,opt, described in Section 5 of [11]. Define the empirical relative efficiency of m̂SBK,α with respect
to m̃K ,α as

EFFr
(
m̂SBK,α

)
=

[ ∑100
t=0

{
m̃K ,α (xt) − mα(xt )

}2∑100
t=0

{
m̂SBK,α,r (xt ) − mα(xt )

}2

]1/2

.

EFF measures the relative efficiency of the SBK estimator to the oracle estimator. For increasing sample size, it should
increase to 1 by Theorem 2. Table 3 shows the MASEs of m̃K ,1, m̂SBK,1 and the average of EFFs from 1000 replications for
n ∈ {500, 1000, 2000, 4000}. It is clear that the MASEs of both SBK estimator and the oracle estimator decrease when
sample sizes increase, and the SBK estimator performs as well asymptotically as the oracle estimator, see Theorem 2.

To have an impression of the actual function estimates, for r1 = 0, r2 = 0.5with sample size n ∈ {500, 1000, 2000, 4000},
we have plotted the SBK estimators and their 95% asymptotic SCCs (red solid lines), point-wise confidence intervals (red
dashed lines), oracle estimators (blue dashed lines) for the true functions m1 (thick black lines) in Fig. 2. Here we use
r1 = 0 because we want to give the 95% asymptotic SCCs, which need the observations be iid to satisfy Assumption (A5’). As
expected by theoretical results, the estimation is closer to the real function and the confidence band is narrower as sample
size increasing.

To compare the prediction performance of GAM and GAPLM, we introduce CAP and AR first. For any score function S, one
defines its alarm rate F (s) = Pr (S ≤ s) and the hit rate FD (s) = Pr (S ≤ s | D) where D represents the conditioning event of
‘‘default’’. Define the Cumulative Accuracy Profile (CAP) curve, for each u ∈ (0, 1), as

CAP (u) = FD{F−1(u)}, (11)



8 R. Liu et al. / Journal of Multivariate Analysis 162 (2017) 1–15

Fig. 1. Plots of densities for β̂1 with n = 500 (dotted line), n = 1000 (dashed line), n = 2000 (thin solid line), n = 4000 (thick solid line) for (a)
r1 = 0, r2 = 0, (b) r1 = 0, r2 = 0.5, (c) r1 = 0.5, r2 = 0, (d) r1 = 0.5, r2 = 0.5 from 1000 replications.

which is the percentage of default-infected obligators that are found among the first (according to their scores) 100 × u% of
all obligators. A perfect rating method assigns all lowest scores to exactly the defaulters, so its CAP curve linearly increases
up and then stays at 1; in other words, CAPP (u) = min (u/p, 1) for all u ∈ (0, 1), where p denotes the unconditional
default probability. In contrast, a noninformative rating method with zero discriminatory power displays a diagonal line
CAPN (u) = u for all u ∈ (0, 1). The CAP curve of a given scoring method S always locates between these two extremes and
gives information about its performance.

The area between the CAP curve and the noninformative diagonal CAPN (u) ≡ u is aR, whereas aP is the area between
the perfect CAP curve CAPP (u) and the noninformative diagonal CAPN (u). Thus the CAP can be measured for example by
Accuracy Ratio (AR): the ratio of aR and aP , viz.

AR =
aR
aP

=
2

1 − p

{∫ 1

0
CAP (u) du − 1

}
,

where CAP (u) is given in (11). The AR takes value in [0, 1], with value 0 corresponding to the noninformative scoring, and
1 the perfect scoring method. A higher AR indicates an overall higher discriminatory power of a method. Table 4 shows the
average and standard deviations of the ARs from 1000 replications using k-fold cross-validation with k ∈ {2, 10, 100} for
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Table 3
The 100×MASEs of m̃K,1 , m̂SBK,1 and EFFs for n ∈ {500, 1000, 2000, 4000} from 1000 replications.

r n 100 × MASE
(
m̃K,α

)
100 × MASE

(
m̂SBK,α

)
EFF

(
m̂SBK,1

)
r1 = 0
r2 = 0

500
1000
2000
4000

4.482
2.418
1.582
1.212

4.603
2.503
1.613
1.247

0.9501
0.9809
0.9854
0.9923

r1 = 0.5
r2 = 0

500
1000
2000
4000

4.060
2.592
1.746
1.194

4.322
2.649
1.714
1.218

0.9445
0.9767
0.9832
0.9936

r1 = 0
r2 = 0.5

500
1000
2000
4000

4.845
2.935
1.951
1.515

6.348
3.559
2.177
1.648

0.8827
0.8755
0.9494
0.9795

r1 = 0.5
r2 = 0.5

500
1000
2000
4000

5.656
2.804
1.886
1.525

7.114
3.570
2.089
1.634

0.8722
0.8951
0.9478
0.9744

Table 4
The mean and standard deviation (in parentheses) of Accuracy Ratio (AR) values for GLM, GAM, GAPLM for r1 = 0, r2 = 0 from 1000 replications.

n k = 2 k = 10 k = 100

500 GLM
GAM
GAPLM

0.6287 (0.0436)
0.6222 (0.0732)
0.6511 (0.0479)

0.6412 (0.0397)
0.6706 (0.0393)
0.6828 (0.0377)

0.6438 (0.0390)
0.6756 (0.0400)
0.6861 (0.0391)

1000 GLM
GAM
GAPLM

0.6429 (0.0282)
0.6735 (0.0438)
0.6861 (0.0298)

0.6476 (0.0268)
0.6863 (0.0326)
0.6968 (0.0254)

0.6488 (0.0268)
0.6929 (0.0261)
0.7001 (0.0258)

2000 GLM
GAM
GAPLM

0.6474 (0.0204)
0.6842 (0.0615)
0.6984 (0.0204)

0.6513 (0.0195)
0.6984 (0.0286)
0.7067 (0.0178)

0.6519 (0.0188)
0.7000 (0.0185)
0.7057 (0.0178)

4000 GLM
GAM
GAPLM

0.6507 (0.0134)
0.6889 (0.0243)
0.7056 (0.0130)

0.6522 (0.0136)
0.6968 (0.0403)
0.7110 (0.0124)

0.6529 (0.0132)
0.7079 (0.0164)
0.7119 (0.0119)

r1 = 0, r2 = 0 and n ∈ {500, 1000, 2000, 4000}. In each replication, we randomly divide the set of observations into k equal
size folds and use the remaining k − 1 folds as training data set to make prediction for each fold. After we obtain all the
predictions for each observation in the data set, we compute the CAP and AR based on above formula. It is clear that GAPLM
has best predication accuracy.

Finally, to show the estimation performance when T has categorical variables, we generate data using the same model
above but add one more categorical variable, i.e., d1 = 3, β = (β0, β1, β2, β3)

⊤
= (1, 1, 1, 1)⊤, T3 = {0, 1} with probability

0.5 for T3 = 1 and independent with the other variables T and X . Table 5 shows the bias, variances, MSEs and EFFs of β̂3
for R = 1000 with sample sizes n ∈ {500, 1000, 2000, 4000}. The results show that the estimator works as the asymptotic
theory indicates.

5.2. Example 2

The credit reform database, provided by the Research Data Center (RDC) of the Humboldt Universität zu Berlin, was
studied using a GAM in [11]. The data set contains d = 8 financial ratios, which are shown in Table 6, of 19,610 German
companies (18,610 solvent and 1000 insolvent). The time period ranges from 1997 to 2002 and in the case of the insolvent
companies the information was gathered two years before the insolvency took place. The last annual report of a company
before it went bankrupt receives the indicator Y = 1 and for the rest (solvent) Y = 0. In the original data set, the variables are
labeled as Zα . In order to satisfy the Assumption (A4) in [11], we need the transformationXiα = Fnα (Ziα) for allα ∈ {1, . . . , 8},
where Fnα is the empirical cdf of the data X1α, . . . , Xnα . See [3,11] for more details of this data set.

Using a GAM and the SBK method, we clearly see via the SCCs that the shape of m2 (x2) is linear. Fig. 3(a) shows that a
linear line is covered by the SCCs of m̂2. We additionally show the SCCs for another component function of ln(Total_Assets)
in Fig. 3(b). The SCCs do not cover a linear line. In fact, among the eight financial ratios considered, only x2 yields a
linear influence. To improve the precision in statistical calibration and interpretability, we can use GAPLM with parametric
m2 (x2) = β2x2.

For the RDC data, the in-sample AR value obtained from GAPLM is 62.89%, which is very close to the AR value 63.05%
obtained from GAM in [11] and higher than the AR value 60.51% obtained from SVM in [3]. To compare the prediction
performance, we use the AR introduced in Example 1. Then we randomly divide the data set into k ∈ {2, 10} folds and
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Fig. 2. Plots ofm1 (thick black line), m̃K,1 (blue dashed line), asymptotic 95% point-wise confidence intervals (red dashed line), m̂SBK,1 and 95% simultaneous
confidence bands (red solid line) for r1 = 0, r2 = 0.5 and (a) n = 500, (b) n = 1000, (c) n = 2000, (d) n = 4000.

obtain the prediction for each observation using the remaining k − 1 folds as training set. Based on the prediction of all
the observations, we can compute prediction AR value. Table 7 shows the mean and standard deviation of the prediction
AR values from 100 replications. GAPLM has higher prediction AR value than GAM for 99 replications when k = 2 and 100
times when k = 10. It is clear that GAPLM has best prediction accuracy due to the better statistical calibration.
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Appendix A

A.1. Preliminaries

In the proofs that follow, we use ‘‘U ’’ and ‘‘U ’’ to denote sequences of random variables that are uniformly ‘‘O’’ and
‘‘O ’’ of certain order. Denote the theoretical inner product of bJ and 1 with respect to the αth marginal density fα(Xα) as
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Fig. 3. Plots of estimations of component functions (a) m̂SBK,2(x2) and (b) m̂SBK,8(x8) and asymptotic 95% simultaneous confidence bands.

Table 5
The mean of 10 × bias, 100 × variances, 100 × MSEs and EFFs of β̂3 from 1000 replications.

r n 10 × BIAS 100 × VARIANCE 100 × MSE EFF(β̂3)

r1 = 0
r2 = 0

500
1000
2000
4000

1.476
0.770
0.448
0.315

10.129
4.437
1.846
0.937

12.309
5.031
2.047
1.037

0.7634
0.8343
0.8929
0.9572

r1 = 0.5
r2 = 0

500
1000
2000
4000

1.336
0.833
0.423
0.302

10.329
4.221
1.952
0.944

12.115
4.916
2.132
1.036

0.7445
0.8267
0.8832
0.9436

r1 = 0
r2 = 0.5

500
1000
2000
4000

1.441
0.803
0.489
0.328

10.154
4.446
2.136
0.924

12.231
5.114
2.376
1.032

0.7556
0.8430
0.8785
0.9572

r1 = 0.5
r2 = 0.5

500
1000
2000
4000

1.475
0.812
0.524
0.302

11.014
4.464
1.970
0.966

13.190
5.124
2.245
1.058

0.7794
0.8314
0.8852
0.9529

Table 6
Definitions of financial ratios.

Ratio No. Definition Ratio No. Definition

Z1 Net_Income/Sales Z5 Cash/Total_Assets
Z2 Operating_Income/Total_Assets Z6 Inventories/Sales
Z3 Ebit/Total_Assets Z7 Accounts_Payable/Sales
Z4 Total_Liabilities/Total_Assets Z8 ln(Total_Assets)

Table 7
The mean and standard deviation (in parentheses) of AR values for GLM,
GAM, GAPLM for k-fold cross-validation with k ∈ {2, 10} from 1000
replications.

k = 2 k = 10

GLM 0.5627 (0.0271) 0.5751 (0.00162)
GAM 0.5888 (0.0405) 0.6123 (0.00219)
GAPLM 0.5928 (0.0408) 0.6164 (0.00196)
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cJ,α =
⟨
bJ (Xα), 1

⟩
=

∫
bJ (Xα)fα(Xα)dxα and define the centered B-spline basis bJ,α (xα) and the standardized B-spline basis,

for each J ∈ {1, . . . ,N + 1}, as

bJ,α(Xα) = bJ (Xα) −
cJ,α

cJ−1,α
bJ−1(Xα), BJ,α(Xα) =

bJ,α (xα)

∥bJ,α∥2
,

so that E{BJ,α(Xα)} = 0 and E{B2
J,α(Xα)} = 1. Theorem A.2 in [21] shows that under Assumptions . (A1)–(A5) and (A7),

constants c0 (f ),C0(f ) , c1 (f ) andC1(f ) exist depending on themarginal densities f1, . . . , fd such that c0 (f )H ≤ cJ,α ≤ C0 (f )H
and

c1 (f )H ≤ ∥bJ,α∥
2
2 ≤ C1(f )H. (A.1)

Lemma A.1 ([1], p. 149). For any m ∈ C1 [0, 1] with m′
∈ Lip ([0, 1] , C∞), there exist a constant C∞ > 0 and a function

g ∈ G(0)
n [0, 1] such that ∥g − m∥∞ ≤ C∞H2.

A.2. Oracle estimators

Proof of Theorem1. (i) According to theMeanValue Theorem, a vector β̄ betweenβ and β̃ exists such that (β̃−β)∇2ℓ̃β(β̄) =

∇ℓ̃β(β̃) − ∇ ℓ̃β (β) = −∇ℓ̃β (β) since ∇ℓ̃β(β̃) = 0, where

− ∇
2ℓ̃β(β̄) = n−1

n∑
i=1

b′′
{

¯β⊤T i + m (Xi)}TiT⊤

i > cbcQId1×d1

with cb > 0 according to (A2), and then the infeasible estimator is β̃ = argmaxa∈R1+d1 ℓ̃β (a) .

∇ℓ̃β (β) =
1
n

n∑
i=1

[YiTi − b′
{β⊤Ti + m (Xi)}Ti ] =

1
n

n∑
i=1

σ (Ti,Xi) εiTi.

We have |n−1∑n
i=1σ (Ti,Xi) εiTi| = Oa.s.(n−1/2 ln n) by Bernstein’s Inequality as Lemma A.2 in [11], so |β̃ − β| =

Oa.s.(n−1/2 ln n) according to β̃ − β = −{∇
2ℓ̃β(β̄)}−1

∇ℓ̃β (β). Then

∇
2ℓ̃β(β̄)

a.s.
→ ∇

2ℓ̃β (β) = −
1
n

n∑
i=1

b′′
{β⊤Ti + m (Xi)}TiT⊤

i ,

which converges to −E[b′′ {m (T,X)} TT⊤
] almost surely at the rate of n−1/2 ln n. So⏐⏐⏐β̃ − β − [Eb′′

{m (T,X)} TT⊤
]
−1 1

n

n∑
i=1

σ (Ti,Xi) εiTi

⏐⏐⏐ = Oa.s.{n−1(ln n)2}.

Since n−1∑n
i=1σ (Ti,Xi) εiTi ⇝ N [0, a (φ) [Eb′′

{m(T,X)}TT⊤
]
−1

] by the Central Limit Theorem, an application of Slutsky’s
Lemma completes the proof of Theorem 1(i).

(ii) The proof is trivial based on the properties of empirical likelihood ratio for GLMs; see Theorem 3.2 in [15] and
Corollary 1 in [7]. □

A.3. Spline-backfitted kernel estimators

In this section, we present the proofs of Theorems 2–4. We write any g ∈ G0
n as g = λ⊤B (Xi) with vector λg =(

λJ,α
)⊤

1≤J≤N+1,1≤α≤d2
∈ R(N+1)d2 the dimension of the additive spline space G0

n , and

B (x) =
(
B1,1(x1), . . . , BN+1,1(x1), . . . , B1,d2

(
xd2

)
, . . . , BN+1,d2

(
xd2

))⊤
.

Denote B (t, x) =
(
1, t1, . . . , td1 , B1,1(x1), . . . , BN+1,1 (x1) , . . . , B1,d2

(
xd2

)
, . . . , BN+1,d2

(
xd2

))⊤,

λ = (λ⊤

β , λ⊤

g )
⊤

=
(
λ0, λk, λJ,α

)⊤

1≤J≤N+1,1≤α≤d2,1≤k≤d1
∈ RNd

with Nd = 1 + d1 + (N + 1) d2 and

L̂(λβ, g) = L̂ (λ) =
1
n

n∑
i=1

[Yi{λ
⊤B(Ti,Xi)} − b{λ⊤B(Ti,Xi)}],
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which yields the gradient and Hessian formulas

∇ L̂ (λ) =
1
n

n∑
i=1

[YiB(Ti,Xi) − b′
{λ⊤B(Ti,Xi)}B(Ti,Xi)],

∇
2L̂ (λ) = −

1
n

n∑
i=1

b′′
{λ⊤B (Ti,Xi)}B (Ti,Xi)B(Ti,Xi)

⊤.

The multivariate functionm (t, x) is estimated by

m̂ (t, x) = β̂0 +

d1∑
k=1

β̂ktk +

d2∑
α=1

m̂α(Xα) = λ̂
⊤

B (t, x) ,

λ̂ = (λ̂
⊤

β , λ̂
⊤

g )
⊤

= (β̂
⊤

, λ̂
⊤

g )
⊤

= (β̂k, λ̂J,α)⊤0≤k≤d1,1≤α≤d2,1≤J≤N+1 = argmaxλL̂ (λ) .

Lemma 14 of Stone [19] ensures that with probability approaching 1, λ̂ exists uniquely and that ∇ L̂(λ̂) = 0. In addition,
Lemma A.1 and (A1) provide a vector ¯λ =(β⊤, λ̄

⊤

g )
⊤ and an additive spline function m̄ such that

m̄ (x) = λ̄
⊤

g B (x) , ∥m̄ − m∥∞ ≤ C∞H2. (A.2)

We first establish technical lemmas before proving Theorems 2 and 4.

Lemma A.2. Under Assumptions (A1)–(A6) and (A8), as n → ∞,

|∇ L̂(λ̄)| = Oa.s.(H2
+ n−1/2 ln n), ∥∇ L̂(λ̄)∥ = Oa.s.(H3/2

+ H−1/2n−1/2 ln n).

Proof. See Online Supplement. □

Define the following matrices:

V = EB (T,X)B(T,X)⊤, S = V−1, Vn = n−1
n∑

i=1

B (Ti,Xi)B(Ti,Xi)
⊤, Sn = V−1

n ,

Vb = Eb′′
{m (T,X)}B (T,X)B(T,X)⊤ =

[
vb,00 vb,0,k vb,0,J,α
vb,0,k′ vb,k,k′ vb,J,α,k′

vb,0,J ′,α′ vb,J ′,α′,k vb,J,α,J ′,α′

]
Nd×Nd

where Nd = (N + 1) d2 + 1 + d1, and

Sb = V−1
b =

[ sb,00 sb,0,k sb,0,J,α
sb,0,k′ sb,k,k′ sb,J,α,k′

sb,0,J ′,α′ sb,J ′,α′,k b,J,α,J ′,α′

]
Nd×Nd

. (A.3)

For any vector λ ∈ RNd , denote

Vb (λ) = Eb′′
{λ⊤B (T,X)}B (T,X)B(T,X)⊤, Sb (λ) = V−1

b (λ)

Vn,b (λ) = −∇
2L̂ (λ) , Sn,b (λ) = V−1

n,b (λ) . (A.4)

Lemma A.3. Under Assumptions (A2) and (A4), one has

cVINd ≤ V ≤ CVINd , cSINd ≤ S ≤ CSINd , cV,bINd ≤ Vb ≤ CV,bINd , cS,bINd ≤ Sb ≤ CS,bINd .

Under Assumptions (A2), (A4), (A5) and (A8), as n → ∞ with probability increasing to 1

cVINd ≤ Vn (λ) ≤ CVINd , cSINd ≤ Sn (λ) ≤ CSINd cV,bINd ≤ Vn,b (λ) ≤ CV,bINd , cS,bINd ≤ Sn,b (λ) ≤ CS,bINd .

Proof. Using Lemma A.7 in [14] and the boundedness of the function b′. □

Define three vectors Φb,Φv,Φr as

Φb =
(
Φb,J,α

)⊤

0≤k≤d1,1≤α≤d2,1≤J≤N+1 = −Sbn−1
n∑

i=1

[
b′

{m (Ti,Xi)} − b′
{m̄ (Ti,Xi)}

]
B (Ti,Xi) ,

Φv =
(
Φv,J,α

)⊤

0≤k≤d1,1≤α≤d2,1≤J≤N+1 = −Sbn−1
n∑

i=1

[σ (Ti,Xi) εi]B (Ti,Xi) ,
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and

Φr =
(
Φr,J,α

)⊤

0≤k≤d1,1≤α≤d2,1≤J≤N+1 = λ̂ − λ̄ − Φb − Φv.

Lemma A.4. Under Assumptions (A1)–(A6) and (A8), as n → ∞,

∥λ̂ − λ̄∥ = Oa.s.(H3/2
+ H−1/2n−1/2 ln n), (A.5)

∥Φr∥ = Op(H−3/2n−1 ln n), (A.6)
∥Φb∥ = Oa.s.(H2), ∥Φv∥ = Oa.s.(H−1/2n−1/2 ln n).

Proof. See Online Supplement. □

Lemma A.5. Under Assumptions (A1)–(A6) and (A8), as n → ∞,m̂ − m̄

2,n +

m̂ − m̄

2 = Oa.s.(H3/2

+ H−1/2n−1/2 ln n),
m̂ − m


2,n +

m̂ − m

2 = Oa.s.(H3/2

+ H−1/2n−1/2 ln n).

Proof. Lemma A.3 impliesm̂ − m̄

2,n +

m̂ − m̄

2 ≤ 2CV∥λ̂g − λ̄g∥ = Oa.s.(H3/2

+ H−1/2n−1/2 ln n).

The claim follows from the fact that ∥m̄ − m∥∞ + ∥m̄ − m∥2 + ∥m̄ − m∥2,n = O(H2) by (A.2). □

Proof of Theorem 2. According to (9) and the Mean Value Theorem, a m̄K,1 (x1) between m̂SBK,1(x1) and m̃K,1(x1) exists such
that

ℓ̂′

m1
{m̂SBK,1 (x1) , x1} − ℓ̂′

{m̃K,1(x1), x1} = ℓ̂′′

m1
{m̄K,1(x1), x1} {m̂SBK,1(x1) − m̃K,1(x1)}.

Then according to ℓ̂′
m1

{m̂SBK,1(x1), x1} = 0, one has

m̂SBK,1(x1) − m̃K,1 (x1) = −
ℓ̂′
m1

{m̃K,1(x1), x1}

ℓ̂′′
m1

{m̄K,1(x1), x1}
.

The theorem then follows Lemmas A.15 and A.16 in [11] with small modification including variable T. □

Proof of Theorem 3. It follows Theorem 2 and the same proof of Theorem 1 in [25]. □

Proof of Theorem 4. See Online Supplement. □

Appendix B. Supplementary data

gaplmsbk.R: R package containing code to perform SBK estimation for component functions in generalized additive
partially linear model available at https://github.com.

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2017.07.011.
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