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a b s t r a c t

In this article we consider the Two-Way ANOVA model with unequal cell frequencies
without the assumption of equal error variances. For the problem of testing no interaction
effects and equal main effects, we propose a parametric bootstrap (PB) approach and
compare it with existing the generalized F (GF) test. The Type I error rates and powers
of the tests are evaluated using Monte Carlo simulation. Our studies show that the PB test
performs better than the generalized F-test. The PB test performs very satisfactorily even
for small samples while the GF test exhibits poor Type I error properties when the number
of factorial combinations or treatments goes up.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In a two-way ANOVA model with factors A and B, it is customary to assume that the cell variances are the same even
when they are not. In fact, it is well known that without the assumption of equal error variances, under the conventional
Neyman–Pearson theory, exact tests for testing the effects of factors A and B do not exist. When variances are unequal,
classical F-tests which are calculated under the equal error variance assumptionwill provide only approximate solutions for
testing the effects of factors A and B. The sizes of classical F-tests are fairly robust against the assumption of equal variances
when the sample sizes are equal [4]. When the sample sizes are different, the sizes of F-tests can substantially exceed the
intended size. Moreover, they suffer from serious lack of power even under moderate heteroscedasticity. The generalized F-
test [1] is a recently developed solutionwhich is based on an extended definition of the p-values [10]. However, [7] observed
in the literature of ANOVA that some asymptotic procedures and the generalized F-test perform satisfactorily for a small
number of treatments and/or moderate to large samples. For one-way ANOVA, they proposed a parametric bootstrap (PB)
approach as a solution. The PB approach has been applied to solve a number of problems when conventional methods are
difficult to apply or fail to provide exact solutions; see, for example, [8,9,6].

For testing the interaction effect, [3] carried out a simulation study to compare the performance of the generalized F-test
and the classical F-test when the number of factorial combinations of factors A and B is small. In this case, the generalized
F-test performs better than the classical F-test. As already pointed out, for a bigger number of factorial combinations, the
type I error probability of the generalized F-test may far exceed the nominal level. Therefore, it is important to develop
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a test procedure for the interaction effect and the main effect with satisfactory Type-I error rate and power regardless of
number of factorial combinations and the sample sizes. In the present paper, we will develop a parametric bootstrap (PB)
approach. Bootstrap approach is a type of Monte Carlo method applied on observed data [5]. The bootstrap methods can
be in either parametric or nonparametric settings. However, the problems addressed in this paper are in a strict parametric
setting, namely the two-way ANOVAmodel with the usual normality assumptions. Therefore, we only propose a parametric
bootstrap approach.

This article is organized as follows. For testing no interaction effect to the two-way ANOVA model with unequal cell
frequencies unequal error variances in Section 2 and compare it with the generalized F-test. For the tests on main effects,
we also propose a parametric bootstrap (PB) approach in Section 3. The methods are compared with respect to Type I error
rates and powers using Monte Carlo simulation. Comparison studies in Section 4 show that the PB test performs better than
generalized F-test. Some discussion and further remarks are provided in Section 5.

2. Tests for the interaction effects

Consider the two-way ANOVA model with factors A and B, with factor levels A1, . . . , Aa and B1, . . . , Bb, respectively
giving a total of ab factorial combinations or treatments. Suppose a random sample of size nij is available from ijth treatment,
i = 1, . . . , a; j = 1, . . . , b. Let Yijk, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , nij represent these random variables and yijk
represent their observed (sample) values. Assume that nij > 1 so that sample variances can be computed for each cell of
the design. Sample mean and the sample variance of the ijth treatment are denoted by Y ij and S2ij , i = 1, . . . , a; j = 1, . . . , b
respectively, where

Y ij =
1
nij

nij
k=1

Yijk and S2ij =
1

nij − 1

nij
k=1

(Yijk − Y ij)
2.

The observed values of these random variables are denoted as yij and s2ij, i = 1, . . . , a; j = 1, . . . , b respectively. Consider
the two-way ANOVA model with unequal error variances:

Yijk = µ + αi + βj + γij + eijk (2.1)

eijk ∼ N(0, σ 2
ij ), i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , nij,

where µ is the general mean, αi is an effect due to the ith level of the factor A, βj is an effect due to the jth level of
the factor B, and γij represents an effect due to the interaction of the factor level Ai and the factor level Bj. Writing
Yij = (Yij1, . . . , Yijnij)

′, Y = (Y ′

11, . . . , Y
′

1b, Y
′

21, . . . , Y
′

2b, . . . , Y
′

a1, . . . , Y
′

ab)
′, α = (α1, . . . , αa)

′, β = (β1, . . . , βb)
′, γ =

(γ11, . . . , γ1b, γ21, . . . , γ2b, . . . , γa1, . . . , γab)
′, the model (2.1) can be written as

Y = 1n···
µ + Z1α + Z2β + Z3γ + e, (2.2)

where n··· =
a

i=1
b

j=1 nij and e is defined similarly to Y . The design matrices Z1, Z2 and Z3 are given by

Z1 = diag(1n1· , . . . , 1na.),

Z2 = [diag(1′

n11 , . . . , 1
′

n1b), diag(1
′

n21 , . . . , 1
′

n2b), . . . , diag(1
′

na1 , . . . , 1
′

nab)]
′,

Z3 = diag(1n11 , . . . , 1n1b , 1n21 , . . . , 1n2b , . . . , 1na1 , . . . , 1nab), (2.3)

where ni· =
b

j=1 nij, and 1k denotes the k × 1 vector of ones, and diag(M1, . . . ,Ma) denotes a block-diagonal matrix with
M1, . . . ,Ma along the blocks.

In order to have µ, αi, βj, and γij uniquely defined, we need to have additional constraints. Let w1, . . . , wa and v1, . . . , vb

be nonnegative weights such that
a

i=1 wi > 0 and
b

j=1 vj > 0. We consider the following constraints

a
i=1

wiαi = 0,
b

j=1

vjβj = 0,
a

i=1

wiγij = 0,
b

j=1

vjγij = 0. (2.4)

In this section, we are interested in testing the following hypothesis

H0AB : γij = 0; i = 1, . . . , a, j = 1, . . . , b (2.5)

against its natural alternative hypothesis. From (2.1), the model for Y ij is

Y ij = µ + αi + βj + γij + eij, (2.6)

eij ∼ N

0, σ 2

ij /nij

, i = 1, . . . , a; j = 1, . . . , b,
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where eij =
1
nij

nij
k=1 eijk. Writing Y = (Y 11, Y 12, . . . , Y ab)

′, and e = (e11, e12, . . . , eab)′, the model (2.6) can be written as

Y = 1abµ + (Ig ⊗ 1b)α + (1g ⊗ Ib)β + γ + e, e ∼ N (0, Σ) , (2.7)

where Σ = diag

σ 2
11/n11, σ

2
12/n12, . . . , σ

2
ab/nab


, α = (α1, . . . , αa)

′, β = (β1, . . . , βb)
′, γ = (γ11, γ12, . . . , γab)

′, Ik is an
identitymatrixwith order k, V⊗W denotes the Kronecker product ofmatrices V andW . Define the standardized interaction
sum of squares

S̃I

Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


=

a
i=1

b
j=1

nij

σ 2
ij


Y ij − µ̂ − α̂i − β̂j

2
, (2.8)

where µ̂, α̂i and β̂j are solutions of µ, αi and βj that minimize the quadratic equation

S̃

Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


=

a
i=1

b
j=1

nij

σ 2
ij


Y ij − µ − αi − βj

2
(2.9)

subject to the constraints given in Eq. (2.4). In fact, denoting θ = (µ, α1, . . . , αa, β1, . . . , βb)
′ and θ̂ = (µ̂, α̂1, . . . ,

α̂a, β̂1, . . . , β̂b)
′, it follows from Theorem 5.2.5 in [11] that

θ̂ = (µ̂, α̂1, . . . , α̂a, β̂1, . . . , β̂b)
′
= (X ′Σ−1X + L′L)−1X ′Σ−1Y , (2.10)

where X = (1ab, Ia ⊗ 1b, 1a ⊗ Ib), L = (l′1, l
′

2)
′, l1 = (0, w1, . . . , wa, 0, . . . , 0), and l2 = (0, 0, . . . , 0, v1, . . . , vb). It may be

shown that

S̃I

Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


=

a
i=1

b
j=1

nij

σ 2
ij


Y ij − µ̂ − α̂i − β̂j

2
= Y

′
Σ−1/2 I − Σ−1/2X(X ′Σ−1X)−X ′Σ−1/2Σ−1/2Y . (2.11)

Namely, S̃I

Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


does not depend on L of chosen weights. If σ 2

ij ’s are known, then a
natural statistic for testing (2.5) is S̃I


Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


. In fact, Σ−1/2Y ∼ N


Σ−1/2µ, Iab


, and C =

I − Σ−1/2X(X ′Σ−1X)−X ′Σ−1/2

is an idempotent matrix with rank (a − 1)(b − 1), we have

Y
′
Σ−1/2CΣ−1/2Y ∼ χ2

(a−1)(b−1)


µ′Σ−1/2CΣ−1/2µ


,

where µ = (µ11, µ12, . . . , µab)
′, µij = µ + αi + βj + γij, χ2

m(δ) denotes a noncentral chi-square random variable with
degrees of freedomm and noncentrality parameter δ. The noncentrality parameter

µ′Σ−1/2CΣ−1/2µ

is equal to zero when γ11 = γ12 = · · · = γab. Let y = (y11, y12, . . . , yab)′ be the observed value of Y . Then, the test that
rejects H0AB in (2.5) whenever

S̃I

y11, y12, . . . , yab; σ 2

11, σ
2
12, . . . , σ

2
ab


> χ2

(a−1)(b−1),λ

is a size λ test, where χ2
m,λ is the upper λth quantile of a chi-square distribution with df = m.

In general, the variances σ 2
ij ’s are unknown; in this case, a test statistic can be obtained by replacing σ 2

ij in (2.11) by S2ij ,
i = 1, . . . , a, j = 1, . . . , b, and is given by

S̃I

Y 11, Y 12, . . . , Y ab; S211, S

2
12, . . . , S

2
ab


= Y

′S−1/2 I − S−1/2X(X ′S−1X)−X ′S−1/2 S−1/2Y , (2.12)

where S = diag

S211/n11, S212/n12, . . . , S2ab/nab


.

In the following, we describe the generalized F test due to [1] and the PB test.

2.1. The generalized F (GF) test

We shall now describe Ananda and Weerahandi’s [1] generalized F test. A generalized test variable is given by

GV =
S̃I

Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


S̃I

y11, y12, . . . , yab; σ 2

11s
2
11/S

2
11, σ

2
12s

2
12/S

2
12, . . . , σ

2
abs

2
ab/S

2
ab


=

S̃I

Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


S̃I

y11, y12, . . . , yab; (n11 − 1)s211/U11, (n12 − 1)s212/U12, . . . , (nab − 1)s2ab/Uab

 ,
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where U11,U12, . . . ,Uab are independent random variables with Uij = (nij − 1)S2ij/σ
2
ij ∼ χ2

nij−1, i = 1, . . . , a, j = 1, . . . , b.

Furthermore, S̃I

Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


∼ χ2

(a−1)(b−1) independently of U11,U12, . . . ,Uab. The ‘‘observed
value’’ of GV is defined as the value of GV at


Y 11, Y 12, . . . , Y ab; S211, S

2
12, . . . , S

2
ab


=

y11, y12, . . . , yab; s211, s

2
12, . . . , s

2
ab


,

and this observed value is 1. Therefore, for a given

y11, y12, . . . , yab; s211, s

2
12, . . . , s

2
ab


, the generalized p-value is given by

p = P (GV > 1|H0AB)

= P


χ2

(a−1)(b−1)

S̃I

y11, y12, . . . , yab; (n11 − 1)s211/U11, (n12 − 1)s212/U12, . . . , (nab − 1)s2ab/Uab

 > 1


. (2.13)

The GF test rejects the null hypothesis in (2.5) whenever the generalized p-value in (2.13) is less than a given nominal level
λ. Notice that, for a given


y11, y12, . . . , yab; s211, s

2
12, . . . , s

2
ab


, the probability in (2.13) does not depend on any unknown

parameters, so it can be estimated using Monte Carlo simulation or computed using the integral expression given in [1]. For
further details on the generalized p-value idea, along with a number of examples, we refer to [1].

It should be noted that in general, the distribution of the generalized p-value may not be uniform (0, 1), and hence the
generalized F test is not exact in the classical sense and its properties should be evaluated using Monte Carlo simulation.

2.2. The PB test

The parametric bootstrap involves sampling from the estimated models. That is, samples or sample statistics are
generated from parametric models with the parameters replaced by their estimates. Recall that under H0AB the vector Y
has the mean Xθ , where θ = (µ, α1, . . . , αa, β1, . . . , βb)

′. As the test statistic in (2.12) is location invariant under the group
of location transformations G = {Y + Xη, η ∈ Ra+b+1

}, without loss of generality, we can take Xθ = 0. Using these facts,
the parametric bootstrap pivot variable can be developed as follows. For a given


y11, y12, . . . , yab; s211, s

2
12, . . . , s

2
ab


, let

Y Bij ∼ N

0, s2ij/nij


and S2Bij ∼ s2ijχ

2
nij−1/(nij − 1), i = 1, . . . , a, j = 1, . . . , b.

Then the PB pivot variable based on the test statistic (2.12) is given by

S̃IB

Y B11, Y B12, . . . , Y Bab; S2B11, S

2
B12, . . . , S

2
Bab


= Y

′

BS
−1/2
B


I − S−1/2

B X(X ′S−1
B X)−X ′S−1/2

B


S−1/2
B Y B, (2.14)

where Y B = (Y B11, Y B12, . . . , Y Bab)
′, and SB = diag


S2B11/n11, S2B12/n12, . . . , S2Bab/nab


. For a given level λ, the PB test rejects

H0AB in (2.5) when

P

S̃IB

Y B11, Y B12, . . . , Y Bab; S2B11, S

2
B12, . . . , S

2
Bab


> s̃I


< λ, (2.15)

where

s̃I = S̃I

y11, y12, . . . , yab; s

2
11, s

2
12, . . . , s

2
ab


is an observed value of S̃I(Y 11, Y 12, . . . , Y ab; S211, S

2
12, . . . , S

2
ab) in (2.12). For fixed (y11, y12, . . . , yab; s211, s

2
12, . . . , s

2
ab),

the above probability does not depend on any unknownparameters, and so it can be estimated usingMonte Carlo simulation
given in Algorithm 1.

Algorithm 1. For a given (n11, n12, . . . , nab), (y11, y12, . . . , yab), and (s211, s
2
12, . . . , s

2
ab):

compute S̃I

y11, y12, . . . , yab; s211, s

2
12, . . . , s

2
ab


in (2.12) and call it s̃I

For k = 1, . . . ,m
generate Y Bij ∼ N


0, s2ij/nij


and S2Bij ∼ s2ijχ

2
nij−1/(nij − 1), i = 1, . . . , a, j = 1, . . . , b

compute S̃IB

Y B11, Y B12, . . . , Y Bab; S2B11, S

2
B12, . . . , S

2
Bab


using (2.14)

if S̃IB

Y B11, Y B12, . . . , Y Bab; S2B11, S

2
B12, . . . , S

2
Bab


> s̃I , set Qk = 1

(end loop)
(1/m)

m
k=1 Qk is a Monte Carlo estimate of the p-value in (2.15).

3. Tests for the main effects

For the two-way classification model with no interaction, the hypotheses of interest are H0A : α1 = α2 = · · · = αa and
H0B : β1 = β2 = · · · = βb, respectively. When the interaction between factors A and B is present, the main effect αi can
not reflect the effect of Ai because it depends on which level of factor B it is in. A popular solution to the problem (Searle
(1971), Chapter 7), [2, Chapter 7] is not quite a test for αi = 0 in the presence of interactions, but rather to test the null
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hypothesis

H0A∗ : αi + γij = 0, i = 1, . . . , a, j = 1, . . . , b (3.1)

subject to the constraint on β in (2.4). Similarly, in the case of the presence of interactions, we also want to test the null
hypothesis

H0B∗ : βj + γij = 0, i = 1, . . . , a, j = 1, . . . , b (3.2)

subject to the constraint on α in (2.4). We only consider the test for H0A∗ in (3.1), testing procedures for H0B∗, H0A and H0B
can be derived similarly.

Define the standardized sum of squares due to factor A and the interaction

S̃A

Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


=

a
i=1

b
j=1

nij

σ 2
ij


Y ij − µ̂ − β̂j

2
, (3.3)

where µ̂ and β̂j are solutions of µ and βj that minimize the quadratic equation

S̃1

Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


=

a
i=1

b
j=1

nij

σ 2
ij


Y ij − µ − βj

2
(3.4)

subject to the constraints given in Eq. (2.4). In fact, denoting θ1 = (µ, β1, . . . , βb)
′ and θ̂1 = (µ̂, β̂1, . . . , β̂b)

′, it follows
from Theorem 5.2.5 in [11] that

θ̂1 = (µ̂, β̂1, . . . , β̂b)
′
= (X ′

1Σ
−1X1 + L′

1L1)
−1X ′

1Σ
−1Y , (3.5)

where X1 = (1ab, 1a ⊗ Ib), and L1 = (0, v1, . . . , vb). It can be shown that

S̃A

Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


=

a
i=1

b
j=1

nij

σ 2
ij


Y ij − µ̂ − β̂j

2
= Y

′
Σ−1/2 I − Σ−1/2X1(X ′

1Σ
−1X1)

−X ′

1Σ
−1/2Σ−1/2Y . (3.6)

Namely, S̃A

Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


does not depend on L1. If σ 2

ij ’s are known, then a natural statistic
for testing (3.1) is S̃A


Y 11, Y 12, . . . , Y ab; σ 2

11, σ
2
12, . . . , σ

2
ab


. In fact, Σ−1/2Y ∼ N


Σ−1/2µ, Iab


, and C1 = (I −

Σ−1/2X1(X ′

1Σ
−1X1)

−X ′

1Σ
−1/2) is an idempotent matrix with rank (a − 1)b, we have

Y
′
Σ−1/2C1Σ

−1/2Y ∼ χ2
(a−1)b


µ′Σ−1/2C1Σ

−1/2µ

,

where µ = (µ11, µ12, . . . , µab)
′, µij = µ + αi + βj + γij. The noncentrality parameter µ′Σ−1/2C1Σ

−1/2µ is equal to zero
when αi + γij = 0, i = 1, . . . , a, j = 1, . . . , b. Let y = (y11, y12, . . . , yab)′ be the observed value of Y . Then, the test that
rejects H0A∗ in (3.1) whenever

S̃A

y11, y12, . . . , yab; σ 2

11, σ
2
12, . . . , σ

2
ab


> χ2

(a−1)b,λ

is a size λ test. In general, the variances σ 2
ij ’s are unknown; in this case, a test statistic can be obtained by replacing σ 2

ij in
(3.6) by S2ij , i = 1, . . . , a, j = 1, . . . , b, and is given by

S̃A

Y 11, Y 12, . . . , Y ab; S211, S

2
12, . . . , S

2
ab


= Y

′S−1/2 I − S−1/2X1(X ′

1S
−1X1)

−X ′

1S
−1/2 S−1/2Y , (3.7)

where S = diag

S211/n11, S212/n12, . . . , S2ab/nab


.

In the following, we describe the PB test for H0A∗ in (3.1). Recall that under H0A∗ the vector Y have the mean X1θ1,
where θ1 = (µ, β1, . . . , βb)

′. As the test statistic in (3.7) is location invariant under the group of location transformations
G = {Y + X1η, η ∈ Rb+1

}, without loss of generality, we can take X1θ1 = 0. Using these facts, the parametric bootstrap
pivot variable can be developed as follows. For a given


y11, y12, . . . , yab; s211, s

2
12, . . . , s

2
ab


, let

Y Bij ∼ N

0, s2ij/nij


and S2Bij ∼ s2ijχ

2
nij−1/(nij − 1), i = 1, . . . , a, j = 1, . . . , b.
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Then the PB pivot variable based on the test statistic (3.7) is given by

S̃AB

Y B11, Y B12, . . . , Y Bab; S2B11, S

2
B12, . . . , S

2
Bab


= Y

′

BS
−1/2
B


I − S−1/2

B X1(X ′

1S
−1
B X1)

−X ′

1S
−1/2
B


S−1/2
B Y B, (3.8)

where Y B = (Y B11, Y B12, . . . , Y Bab)
′, and SB = diag


S2B11/n11, S2B12/n12, . . . , S2Bab/nab


. For a given level λ, the PB test rejects

H0A∗ in (3.1) when

P

S̃AB

Y B11, Y B12, . . . , Y Bab; S2B11, S

2
B12, . . . , S

2
Bab


> s̃A


< λ, (3.9)

where

s̃A = S̃A

y11, y12, . . . , yab; s

2
11, s

2
12, . . . , s

2
ab


is an observed value of S̃A(Y 11, Y 12, . . . , Y ab; S211, S

2
12, . . . , S

2
ab) in (3.7). For fixed (y11, y12, . . . , yab;

s211, s
2
12, . . . , s

2
ab), the above probability does not depend on any unknown parameters, and so it can be estimated using

Monte Carlo simulation given in Algorithm 2.

Algorithm 2. For a given (n11, n12, . . . , nab), (y11, y12, . . . , yab), and (s211, s
2
12, . . . , s

2
ab):

compute S̃A

y11, y12, . . . , yab; s211, s

2
12, . . . , s

2
ab


in (3.7) and call it s̃A

For k = 1, . . . ,m
generate Y Bij ∼ N


0, s2ij/nij


and S2Bij ∼ s2ijχ

2
nij−1/(nij − 1), i = 1, . . . , a, j = 1, . . . , b

compute S̃AB

Y B11, Y B12, . . . , Y Bab; S2B11, S

2
B12, . . . , S

2
Bab


using (3.8)

if S̃AB

Y B11, Y B12, . . . , Y Bab; S2B11, S

2
B12, . . . , S

2
Bab


> s̃A, set Qk = 1

(end loop)
(1/m)

m
k=1 Qk is a Monte Carlo estimate of the p-value in (3.9).

4. Numerical results

As pointed out in [1], testing the hypothesis H0A or H0B does depend on the chosen weights in the presence of possible
interactions [2]. The literature on two-way unbalanced models provided several procedures (under homoscedasticity) for
testing the main effects in the presence of possible interactions. Some methods tested main effects ignoring the presence
of possible interactions. There was no common agreement (Fujikoshi (1993)) about the circumstances under which these
alternative testing procedures should be used. The controversy was not about the derivation of the testing procedures, but
about the appropriate weights. In many situations there are no natural weights to justify a particular procedure. Arnold [2]
gave an excellent coverage of this problem and controversies behind it. Due to these reasons, we will look only at the
interaction effect for comparisons as it does not depend on chosen weights.

We have observed in [3] that the generalized F-test and the classical F-test were evaluated for their validity for small
number of treatments, and the generalized F-test has better size and power performance than the classical F-test. Hence, it
is of interest to study the properties of the proposed test for larger number of treatments by an extensive simulation study
including the behavior of the type I error rates and powers, respectively. In this section we perform the size and power
comparison for the generalized F-test and PB test.

The Type I error rates of the two-way ANOVA tests are estimated using Monte Carlo simulation. It is easy to be seen
that both the generalized F-test and PB test are location-scale invariant, and so we can take, without loss of generality,
that Xθ = 0, γ11 = · · · = γab = 0, and 0 < σ 2

ij ≤ 1, i = 1, . . . , a; j = 1, . . . , b, in our simulation studies. Thus the
sample statistics yij and s2ij will be generated independently as yij ∼ N(0, σ 2

ij ) and s2ij ∼ σ 2
ij χ

2
nij−1/(nij − 1), 0 < σ 2

ij ≤ 1,
i = 1, . . . , a; j = 1, . . . , b.

To estimate the Type I error rates of the GF and PB tests, we have used a two-step simulation. The Monte Carlo method
used for estimating the Type I error rates of the PB test is as follows. For a given sample size and parameter configuration,
we generated 1000 observed vectors (y11, y12, . . . , yab; s211, s

2
12, . . . , s

2
ab), and the observed value s̃I in (2.12) was computed

for each of the generated vectors. For each of the generated s̃A’s, we used 1000 runs to estimate the p-value in (2.15). Finally,
the Type I error rate of the PB test was estimated by the proportion of the 1000 p-values that are less than the nominal level
λ. The Type I error rates of the GF test were similarly estimated. Each test was carried out at the nominal level of λ = 0.05.

To estimate the powers of the GF and PB tests, we have used a similar simulation except for taking different interaction
effect vector γ ’s. The computations were realized in the MATLAB environment.

In Table 1, we present the estimates of Type I error rates for a = 2, b = 3; a = 6, b = 3; and a = 10, b = 3, and sample
sizes ranging from small to moderate. We observe the following from the numerical results in Table 1.

1. For a = 2, b = 3, it appears that the generalized F-test seems to be more conservative than the PB test for the
unbalanced case. For a = 6, b = 3, the GF test and the PB test have similar Type I error rates. In the worst cases, the Type I
error rates of both tests are around 0.06 when the nominal level is 0.05.
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Table 1
Simulated Type I error rates of the tests.

a = 2, b = 3 n = (5, 5, 5, 5, 5, 5) n = (10, 10, 10, 10, 10, 10) n = (3, 3, 4, 5, 6, 6) n = (4, 6, 8, 12, 16, 20)
(σ 2

11, . . . , σ
2
23) PB GF PB GF PB GF PB GF

(1.0, 1.0, 1.0, 1.0, 1.0, 1.0) 0.05 0.02 0.05 0.04 0.05 0.01 0.04 0.03
(0.1, 0.1, 0.1, 0.5, 0.5, 0.5) 0.05 0.03 0.05 0.03 0.04 0.01 0.04 0.03
(1.0, 1.0, 1.0, 0.5, 0.5, 0.5) 0.04 0.02 0.04 0.02 0.05 0.01 0.06 0.04
(0.1, 0.2, 0.3, 0.4, 0.5, 1.0) 0.04 0.02 0.04 0.05 0.03 0.01 0.06 0.03
(0.3, 0.9, 0.4, 0.7, 0.5, 1.0) 0.04 0.01 0.05 0.02 0.05 0.01 0.04 0.02
(0.01, 0.1, 0.1, 0.1, 0.1, 1) 0.06 0.02 0.04 0.04 0.05 0.02 0.06 0.04

a = 6, b = 3 n1 n2 n3 n4

(σ 2
11, . . . , σ

2
63) PB GF PB GF PB GF PB GF

σ2
1 0.04 0.05 0.04 0.06 0.04 0.05 0.04 0.06

σ2
2 0.05 0.05 0.05 0.04 0.03 0.05 0.06 0.03

σ2
3 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.05

σ2
4 0.05 0.03 0.05 0.05 0.03 0.04 0.04 0.05

σ2
5 0.05 0.06 0.05 0.06 0.05 0.04 0.05 0.06

σ2
6 0.05 0.04 0.05 0.04 0.05 0.05 0.04 0.03

a = 10, b = 3 n5 n6 n7 n8

(σ 2
11, . . . , σ

2
10,3) PB GF PB GF PB GF PB GF

σ2
7 0.05 0.06 0.05 0.07 0.03 0.07 0.04 0.07

σ2
8 0.04 0.08 0.05 0.07 0.03 0.08 0.05 0.06

σ2
9 0.04 0.08 0.05 0.08 0.03 0.08 0.05 0.07

σ2
10 0.04 0.07 0.04 0.07 0.03 0.07 0.05 0.06

σ2
11 0.04 0.10 0.04 0.06 0.03 0.10 0.04 0.07

σ2
12 0.04 0.07 0.05 0.07 0.03 0.07 0.05 0.05

PB—parametric bootstrap; GF—generalized F test; n1 = (5, . . . , 5); n2 = (10, . . . , 10); n3 = (3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6);
n4 = (4, 4, 4, 6, 6, 6, 8, 8, 8, 12, 12, 12, 16, 16, 16, 20, 20, 20); n5 = (5, . . . , 5); n6 = (10, . . . , 10); n7 = (3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6); n8 = (4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 12, 12, 12, 12, 12, 16, 16, 16, 16, 16, 20, 20, 20, 20, 20); σ2

1 = (1,
. . . , 1); σ2

2 = (0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9); σ2
3 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.1, 0.2, 0.3, 0.4, 0.5,

0.1, 0.2, 0.3, 0.4, 0.5, 0.1, 0.2, 1.0); σ2
4 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1); σ2

5 = (0.9, 0.8, 0.7, 0.6,
0.5, 0.4, 0.3, 0.2, 0.1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 1); σ2

6 = (0.01, 0.01, 0.01, 0.05, 0.05, 0.05, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.8,
0.8, 1); σ2

7 = (1, . . . , 1); σ2
8 = (0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3, 0.4, 0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 0.8, 0.8,

0.9, 0.9, 0.9, 0.9); σ2
9 = (0.1, 0.2, 0.3, 0.4, 0.5, 1, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 0.1, 0.2, 0.3, 0.4, 0.5, 1);

σ2
10 = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1); σ2

11 = (1,
0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1); σ2

12 = (0.01, 0.01, 0.01,
0.01, 0.01, 0.05, 0.05, 0.05, 0.05, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8, 0.8, 1).

2. We see from the reported Type I error rates for a = 10, b = 3 that the PB test controls the Type I errors satisfactorily.
On the other hand, we see that the Type I errors of the GF test can be as large as 0.1 when λ = 0.05; this test, in general,
appears to be liberal for moderate values of g .

In Table 2, we provide the powers of the two tests for a = 2, b = 3, a = 6, b = 3 and a = 10, b = 3. We once again
observe from this table that the PB test controls the Type I errors very well. In one case, where the GF test was conservative
under the null hypothesis, the PB test appears to be more powerful than the GF test, and the GF test appears to have the
higher loss of power for moderate inequality of interaction effects. Both tests exhibit similar power properties provided the
Type I error rates are close to each other. In some cases, the GF test appears to be more powerful than the PB tests because
of its inflated Type I error rates exceeding the intended level of 0.05.

5. Discussion and further remarks

When heteroscedasticity is present or the number of treatments of the factors goes up, the classical F test and the
generalized F test for the two-way ANOVA model with heteroscedastic error variances have serious Type I error problems
that have been overlooked. This article develops an interesting and flexible bootstrap (PB) approach in order to arrive at a test
procedure, and have compared the PB testwith the generalized F test. Due to the reasons pointed in Section 4, the simulation
study was restricted to the hypothesis about interactions. In view of the fact that the generalized F-test was evaluated for
their validity for small number of treatments, we have studied the properties of the proposed test not only for small number
of treatments but also for larger number of treatments by an extensive simulation study including the behavior of the type I
error rates and powers, respectively. In terms of controlling the Type I error rate, the overall conclusion is that the PB test is
better procedure that performs satisfactorily, regardless of the sample sizes, values of the error variances, and the number
of levels being compared.
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Table 2
Simulated powers of the tests.

a = 2, b = 3

n1 γ = (γ11, . . . , γ23)

(σ 2
11, . . . , σ

2
23) Tests 0 γ1 2γ1 3γ1 4γ1

σ2
1 PB 0.06 0.21 0.69 0.96 1

GF 0.02 0.09 0.52 0.92 0.99

σ2
2 PB 0.05 0.17 0.57 0.92 0.99

GF 0.02 0.08 0.42 0.81 0.97

n2
σ2
1 PB 0.05 0.25 0.76 0.98 1

GF 0.02 0.14 0.58 0.95 1

σ2
2 PB 0.05 0.20 0.63 0.95 1

GF 0.01 0.09 0.45 0.87 0.99

a = 6, b = 3

n3 γ = (γ11, . . . , γ63)

(σ 2
11, . . . , σ

2
63) 0 γ2 2γ2 3γ2 4γ2

σ2
3 PB 0.05 0.15 0.51 0.91 1

GF 0.05 0.15 0.49 0.89 1

σ2
4 PB 0.05 0.08 0.27 0.53 0.85

GF 0.04 0.10 0.25 0.57 0.87

n4
σ2
3 PB 0.05 0.15 0.61 0.95 1

GF 0.04 0.12 0.58 0.95 1

σ2
4 PB 0.06 0.08 0.28 0.66 0.92

GF 0.06 0.12 0.29 0.66 0.91

a = 10, b = 3

n5 γ = (γ11, . . . , γ10,3)

(σ 2
11, . . . , σ

2
10,3) 0 γ3 2γ3 3γ3 4γ3

σ2
5 PB 0.05 0.08 0.25 0.60 0.90

GF 0.05 0.11 0.25 0.62 0.90

σ2
6 PB 0.05 0.08 0.20 0.50 0.84

GF 0.06 0.10 0.24 0.51 0.86

n6
σ2
5 PB 0.04 0.09 0.29 0.71 0.94

GF 0.04 0.10 0.31 0.70 0.96

σ2
6 PB 0.05 0.08 0.23 0.60 0.90

GF 0.06 0.09 0.26 0.63 0.92

n1 = (15, 15, 20, 20, 25, 25); n2 = (15, 18, 21, 24, 27, 30); n3 = (15, 15, 15, 15, 15, 15, 20, 20, 20, 20, 20, 20, 25, 25, 25, 25, 25, 25); n4 =

(15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32); n5 = (15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
25, 25, 25, 25, 25, 25, 25, 25, 25, 25); n6 = (15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22, 23, 24, 25, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31,
32, 32); σ2

1 = (0.1, 0.2, 0.3, 0.4, 0.5, 1.0); σ2
2 = (0.3, 0.9, 0.4, 0.7, 0.5, 1.0); σ2

3 = (0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8,
0.8, 0.9, 1.0);σ2

4 = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1);σ2
5 = (0.1, 0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.3, 0.3,

0.3, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.7, 0.7, 0.7, 0.8, 0.8, 0.8, 0.8, 0.9, 0.9, 0.9, 0.9); σ2
6 = (1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 1, 0.9,

0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1); γ1 = (0, 0, −0.1, 0.1, 0.2, 0.4); γ2 = (0, 0, −0.1, −0.1, 0.1, 0.1, 0.2,
0.2, 0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7); γ3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, −0.1, −0.1, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4, 0.5, 0.5, 0.6,
0.6, 0.7, 0.7, 0.8, 0.8).

Regarding the parametric bootstrap methodology that we have proposed here, note that the bootstrap can obviously
be carried out both parametrically and nonparametrically. However, the problems addressed in the present paper are in a
strict parametric setting, namely the two-way fixed model with the usual normality assumptions, and heterogeneous error
variances. Thus we have chosen to do the bootstrap parametrically. If themodel assumptions are approximately correct, the
robustness of parametric bootstrap results and the nonparametric bootstrap are worth evaluating.

In the present paper, we have considered the two-way ANOVA model in which all effects are fixed treatment effects.
A future direction is to extend the above results to higher-way layout. In many applications involving the use of a mixed
effectsmodel, testing hypotheses concerning the unknown variance components is an important part of data analysis. Then,
for testing hypotheses concerning variance components in setups in which exact F tests do not exist, how to provide an
appropriate parametric bootstrap procedure will be a meaningful problem.
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