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a b s t r a c t

This article explores relationship between parametric bootstrap (PB) and objective
Bayesian (OB) approaches to test equality of the factor level means (overall mean test)
of heteroscedastic one-way analysis of variance (ANOVA) problem. We compared overall
mean tests based on PB, OB, and OB using posterior predictive distribution approaches
by simulation studies. We also proved that the PB and OB overall mean tests for one-way
heteroscedastic ANOVA are asymptotically equivalent.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Consider an ANOVA problem from r normal populations with unequal population variances σ 2
i , i = 1, 2, . . . , r . Let ni

e the group size of factor level i, and let n be the sample size with n =
∑r

i=1 ni. Let yi1, yi2, . . . , yini be a random sample
rom N(ui, σ

2
i ). The one-way heteroscedastic ANOVA (heteANOVA) model with r factor levels is:

yij = µi + eij, i = 1, . . . , r, j = 1, . . . , ni, eij ∼ N(0, σ 2
i ). (1)

This research intends to investigate some methods of the overall mean test for one-way heteANOVA

H0 : µ1 = µ2 = · · · = µr versus Hα : not all µi are equal. (2)

When population variances are unequal, Weerahandi (1995) showed that the p-value given by the classical F-test is
much larger than the p-value obtained under unequal variance assumption. Many alternative methods were developed
for tests in heteANOVA. Yiǧit and Gokpinar (2010) compared nine tests in heteANOVA, such as the F , W (Welch, 1951), BF
(Brown and Forsythe, 1974), Weerahandi’s Generalized F (GF) (Weerahandi, 1995), and PB (Krishnamoorthy et al., 2007)
tests, etc. PB test was shown to be one of the best in regarding the type-I error rates and powers for overall mean test.
PB approach was also shown to be competitive for multiple comparison tests in heteANOVA (Zhang, 2015a,b).

Another approach for one-way heteANOVA problem is Objective Bayes (OB). OB uses Bayes’ Theorem to obtain
posterior distributions of parameters based on some ‘‘objective’’ (also called non-informative or flat) prior distribution
and likelihood function. In most cases, objective priors have little effect on the posterior analysis and give answers that
resemble frequentist solutions, so that data can speak for themselves as much as possible. The pioneers of Bayesianism,

∗ Corresponding author.

E-mail addresses: gzhang123@gmail.com (G. Zhang), fletcher@stat.unm.edu (R. Christensen), jpesko@unm.edu (J. Pesko).

https://doi.org/10.1016/j.spl.2021.109095
0167-7152/© 2021 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.spl.2021.109095
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2021.109095&domain=pdf
mailto:gzhang123@gmail.com
mailto:fletcher@stat.unm.edu
mailto:jpesko@unm.edu
https://doi.org/10.1016/j.spl.2021.109095


G. Zhang, R. Christensen and J. Pesko Statistics and Probability Letters 174 (2021) 109095

h
t
f
S
b
c

2

i

w

w

2

Thomas Bayes and Pierre–Simon Laplace, employed flat priors on the unobserved parameters in the context of their
‘‘inverse probability’’ approach (Bayes and Price, 1683–1775). But Jeffreys (1946) is widely considered as the originator
of the OB methodology.

In this research, we are interested in the relationship between PB and OB approaches to overall mean test for
eteANOVA problem (thereafter called PB or OB test). We want to show the asymptotic equivalence of the different
ests, and to compare the type I error rates and powers of the tests under various settings. This paper is organized as
ollows: Section 2 includes a literature review to help establish some of the background topics related to the research;
ection 3 proves that the PB and OB tests are asymptotically equivalent; Section 4 compares tests based on PB and OB
y simulation studies; Section 5 gives a real example to illustrate the usage of the PB and OB tests; and Section 6 gives
onclusions and possible future research topics.

. Background

In this section, we review PB, OB, and OB using posterior predictive distribution (OBpred) approaches to test H0
n Eq. (2) for one way heteANOVA model (1). The Wald-type weighted test statistic is given by:

T =

r∑
i=1

ni

σ 2
i
ȳi.2 −

(∑r
i=1

ni

σ 2
i
ȳi.
)2

∑r
i=1

ni

σ 2
i

,

here ȳi. is the group i sample mean, i.e.,
∑ni

j=1 yij/ni. The observed test statistic is obtained by replacing the σi’s with
their respective sample variances s2i as follows,

TObs =

r∑
i=1

ni

s2i
ȳi.2 −

(∑r
i=1

ni

s2i
ȳi.
)2

∑r
i=1

ni

s2i

, (3)

here s2i =
∑ni

j=1(yij − ȳi.)2/(ni − 1). The distribution of TObs is obtained through simulations.

.1. Parametric bootstrap (PB) approach

For the goal of simulating TObs under H0, the PB method generates the sufficient statistics ȳi and s2i as follows:

ȳiB ∼ N
(
ȳ..,

s2i
ni

)
or ȳiB ∼ N

(
0, s2i /ni

)
and s2iB ∼

s2i χ
2
ni−1

ni − 1
, (4)

where ȳ.. =
∑r

i=1
∑ni

j=1 yij/n, and χ2
ni−1 is a chi-square random variable with ni − 1 degrees of freedom. The tests we

consider are location-scale invariant, so without loss of generality, we can generate ȳiB ∼ N
(
0, s2i /ni

)
.

For each value of B = 1, . . . ,M , we generate ȳiB , s2iB , for i = 1, . . . , r and compute

TPB =

r∑
i=1

ni

s2iB
ȳ2iB −

(∑r
i=1

ni

s2iB
ȳiB

)2

∑r
i=1

ni

s2iB

. (5)

With a sufficiently large number of draws M , we can flesh out an estimate of the sampling distribution of TObs under H0,
and estimate the generalized p-value Pr(TPB > TObs) with PPB =

∑M
B=1 I(TPB > TObs)/M , where I() is an indicator variable

such that

I(TPB > TObs) =

{
1 if TPB > TObs,
0 otherwise.

2.2. Objective Bayesian (OB) approach

Empirically, the OB approach to the significance test of H0 : µ1 = µ2 = · · · = µr is similar to the PB approach. A
Bayesian significance test looks at how far away TObs is from the posterior distribution of:

T̃ =

r∑
i=1

ni

s2i
(ȳi. − µi)2 −

(∑r
i=1

ni

s2i
(ȳi. − µi)

)2

∑r
i=1

ni
2

.

si
2
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Note that when H0 is true, T̃ = TObs. With flat priors on the µi, we have
ȳi. − µi

si/
√
ni

|Y ∼ tni−1 therefore ȳi. − µi|Y ∼
si

√
ni
tni−1. (6)

We repeatedly generate and compute

TOB =

r∑
i=1

ni

s2i

(
si

√
ni
tni−1

)2

−

(∑r
i=1

ni

s2i

si
√
ni
tni−1

)2

∑r
i=1

ni

s2i

=

r∑
i=1

t2ni−1 −

(∑r
i=1

√
ni

si
tni−1

)2

∑r
i=1

ni

s2i

(7)

Similar to the PB test, we generate TOB M times, and estimate the generalized p-value with POB =
∑M

B=1 I(TOB > TObs)/M .

2.3. Objective Bayesian with posterior predictive distribution (OBpred) approach

The objective posterior predictive distribution is the distribution of unobserved future responses given the observed
data with non-informative prior. The predictive distribution can be dated back to Aitchison (1975).

The test using TObs for H0 : µ1 = µ2 = · · · = µr is a one-sided test, so performance is primarily related to the
behavior of the right-tail of the sampling distribution of TObs under H0. Hence, even if the predictive approach gives a
better estimate of this sampling distribution overall, it may not lead to a better test. For one-way heteANOVA, under H0,
new data observations come from a t distribution such as

yni+1 − ȳi.

si

√
1 +

1
ni

|Y ∼ tni−1.

or a new sample of size ni: yni+1, yni+2, . . . , yni+ni , we have

ȳ∗

i. =

∑ni
j=1 yni+j

ni
= ȳi. + si

√
1 +

1
ni

∑ni
j=1 tj
ni

,

where tj is the t distribution with degree of freedom ni − 1, E[ti] = 0 and Var(ti) = (ni − 1)/(ni − 3), so that E[ȳ∗

i.|Y ] =

¯ i., and Var(ȳ∗

i.|Y ) = s2i
(
1 +

1
ni

) ni − 1
ni(ni − 3)

. Implementing a normal approximation, we have

ȳ∗

i.|Y ∼ N
(
ȳi.,

(ni − 1)(ni + 1)
n2
i (ni − 3)

s2i

)
, s2∗i |Y ∼

χ2
ni−1

ni − 1
(ni − 1)(ni + 1)

ni(ni − 3)
s2i . (8)

Under H0, and let zi be a standard normal random variable, we can compute draws of Tpred as follows:

Tpred =

r∑
i=1

ni

s∗2i
(ȳ∗

i. − ȳi.)2 −

(∑r
i=1

ni

s∗2i
(ȳ∗

i. − ȳi.)
)2

∑r
i=1

ni

s∗2i

(9)

=

r∑
i=1

ni

s2i

(
χ2
ni−1

ni − 1
(ni − 1)(ni + 1)

ni(ni − 3)

) (zi
√

s2i (ni − 1)(ni + 1)
n2
i (ni − 3)

)2

−

⎛⎜⎜⎜⎜⎝∑r
i=1

ni

s2i

(
χ2
ni−1

ni − 1
(ni − 1)(ni + 1)

ni(ni − 3)

) (zi
√

s2i (ni − 1)(ni + 1)
n2
i (ni − 3)

)⎞⎟⎟⎟⎟⎠
2

∑r
i=1

ni

s2i

(
χ2
ni−1

n − 1
(ni − 1)(ni + 1)

n (n − 3)

) . (10)
i i i
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To approximate the generalized p-value Pr(TPred > TObs), we take M draws of TPred, and calculate Ppred =
∑M

B=1 I(TPred >
TObs)/M .

3. PB and OB relationship for one-way heteroscedastic ANOVA

From a philosophical standpoint, the PB and OB tests are fundamentally coming from different places. The PB considers
data as random and parameters as fixed, while OB considers data as fixed and parameters as random. Empirically, the
PB and OB approaches tend to give similar results. Bayarri and Berger (2004) considered OB to be perhaps ‘‘the most
promising route to the unification of Bayesian and frequentist statistics’’. Efron (2013) discussed relationship between the
PB and OB, specifically demonstrating their near-equivalency for the problem of estimating the correlation parameter
of a bivariate normal distribution. Efron (2012) showed the existence of a ‘‘Bayes/bootstrap’’ conversion factor for
multidimensional exponential families. In this section, we establish the asymptotic equivalence between the PB and OB
approaches of the overall mean test for one-way heteANOVA.

Theorem 1. For the overall mean test H0 : µ1 = µ2 = · · · = µr of the one way ANOVA model (1), the PB test statistic (5),
B test statistic (7), and the OBpred test statistic (9) are asymptotically equivalent to each other, i.e., the limiting distributions
f the three statistics are the same as ni → ∞ for i = 1, 2, . . . , r.

roof. Noting the relationship between the standard normal, chi-squared, and t distributions such as zi/
√

χ2
ni−1/(ni − 1)

d tni−1, we can rewrite TPB in terms of draws from tni−1 distribution as follows:

TPB =

r∑
i=1

t2ni−1 −

(∑r
i=1

√
ni

si
tni−1 ·

√
ni − 1
χ2
ni−1

)2

∑r
i=1

ni(ni − 1)
s2i χ

2
ni−1

.

Compare to TOB in Eq. (7), we first want to show that χ2
ni−1/(ni − 1)

a.s.
→ 1.

By the strong law of large numbers, as ni → ∞ for i = 1, 2, . . . , r ,

χ2
ni−1

ni − 1
d
=

∑ni−1
j=1 z2j

ni − 1
a.s.
→ 1.

By Slutsky’s theorem, TPB and TOB have the same limiting distribution.
Now consider OBpred test statistics (9). When ni → ∞ for i = 1, 2, . . . , r ,

gi =
n2
i − 1

n2
i − 3ni

=
(ni + 1)(ni − 1)

ni(ni − 3)
→ 1.

A similar argument can be applied to prove that Tpred has the same limiting distribution as TPB. Therefore, TPB, TOB, Tpred
have the same limiting distributions. □

4. Simulation study

Theorem 1 shows that the PB and OB approaches for overall mean test for heteANOVA problem are asymptotically
equivalent. In this section, we use a small simulation study to investigate the performance of the PB and OB methods in
regarding type I error rates and power of the tests.

The simulation study was performed with factors: (1) number of levels r = 3; (2) population standard deviation
σ = (σ1, σ2, σ3): various combinations; (3) significance level α: .01, .05 and .1; (4) group sizes n = (n1, . . . , n3): small
size with n = (3, 5, 7), medium size with n = (7, 10, 13), and large size with n = (21, 30, 39). Since the tests we consider
are location-scale invariant, without loss of generality, we take H0 as µ1 = µ2 = µ3 = 0, and take two alternatives as
µ1 = 0, µ2 = 1, µ3 = 2, and µ1 = 0, µ2 = 3, µ3 = 6 for power calculation. The following gives detailed steps, and
Tables 1 and 2 give the simulation results.

(1) For a given group size n and parameter configuration, generate (ȳ1., ȳ2., ȳ3., s21, s
2
2, s

2
3) according to ȳi. ∼ N(0, σ 2

i /ni)
and s2i ∼ σ 2

i χ2
ni−1/(ni − 1), i = 1, 2, 3;

(2) For a given (n1, n2, n3), (ȳ1., ȳ2., ȳ3.) and (s21, s
2
2, s

2
3), compute TObs by (3);

(3) For B = 1, . . . , 5000

(a) PB: generate ȳiB and s2iB by (4), compute TPB using (5)
if TPB > TObs, set IPB = I(TPB > TObs) = 1, (end loop)
P =

∑5000 I /5000 is a Monte Carlo (MC) estimate of the p-value of T .
PB B=1 PB PB

4
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Table 1
Simulation result: n is a vector of unequal group sizes; σ is a vector of unequal variances; Numbers in
Table are empirical significance levels.
n σ α = .01 α = .05 α = .1

PB OB OBpred PB OB OBpred PB OB OBpred

(3,5,7) (1,1,1) .0155 .0025 .0000 0.0595 .0210 .0135 .0970 .0575 .0490
(4,4,4) .0135 .0015 .0000 .0485 .0220 .0135 .1045 .0585 .0495
(1,2,4) .0075 .0020 .0000 .0400 .0190 .0009 .0915 .0505 .0395
(1,4,9) .0120 .0015 .0000 .0500 .0250 .0085 .1090 .0770 .0425
(4,2,1) .0300 .0040 .0015 .0715 .0345 .0460 .1150 0.0910 .0825
(9,4,1) .0275 .0125 .0035 .0685 .0410 .0475 .1200 .0895 .1070

(7,10,13) (1,1,1) .0065 .0040 .0090 .0455 .0385 .0530 .1005 .0835 .1055
(4,4,4) .0115 .0040 .0120 .0515 .0435 .0415 .0975 .0725 .1085
(1,2,4) .0070 .0045 .0085 .0515 .0390 .0480 .0900 .0985 .0995
(1,4,9) .0075 .0075 .0105 .0460 .0340 .0500 .0975 .0975 .1055
(4,2,1) .0120 .0085 .0080 .0515 .0530 .0515 .1125 .0905 .0965
(9,4,1) .0110 .0115 .0145 .0505 .0505 .0530 .1025 .0985 .1135

(21,30,39) (1,1,1) .0085 .0115 .0090 .0500 .0465 .0430 .0975 .0820 .0985
(4,4,4) .0165 .0085 .0070 .0460 .0535 .0495 .0990 .0940 .0970
(1,2,4) .0095 .0090 .0065 .0540 .0510 .0510 .1135 .0980 .0980
(1,4,9) .0100 .0070 .0085 .0485 .0385 .0525 .0915 .0960 .0950
(4,2,1) .0110 .0070 .0140 .0575 .0500 .0590 .0950 .0920 .1045
(9,4,1) .0090 .0115 .0070 .0475 .0455 .0590 .1065 .1040 .0875

Table 2
Simulation result: significance level for the tests is .05; Numbers in Table are empirical statistical powers
under the two alternatives µ1 = 0, µ2 = 1, µ3 = 2, and µ1 = 0, µ2 = 3, µ3 = 6.
n σ µ1 = 0, µ2 = 1, µ3 = 2 µ1 = 0, µ2 = 3, µ3 = 6

PB OB OBpred PB OB OBpred

(3,5,7) (1,1,1) .5325 .3225 .2845 1.0000 .9990 1.0000
(4,4,4) .0820 .0310 .0300 .3345 .1725 .1390
(1,2,4) .1525 .0852 .0420 .8785 .7175 .5560
(1,4,9) .0705 .0480 .0255 .3560 .2695 .1295
(4,2,1) .1290 .0760 .0670 .6130 .5205 .5355
(9,4,1) .0855 .0615 .0605 .2120 .1430 .1415

(7,10,13) (1,1,1) .9480 .9300 .9335 1.0000 1.0000 1.0000
(4,4,4) .1325 .1005 .1240 .7415 .7045 .7525
(1,2,4) .3585 .3225 .3775 .9990 .9995 .9990
(1,4,9) .1235 .1170 .1210 .7415 .7375 .7535
(4,2,1) .2795 .2615 .2900 .9970 .9955 .9955
(9,4,1) .1050 .1060 .1215 .5835 .5815 .5880

(21,30,39) (1,1,1) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
(4,4,4) .3565 .3310 .3580 1.0000 1.0000 .9995
(1,2,4) .8825 .8750 .8740 1.0000 1.0000 1.0000
(1,4,9) .3530 .3490 .3500 .9985 .9990 .9995
(4,2,1) .8190 .8150 .8005 1.0000 1.0000 1.0000
(9,4,1) .2760 .2680 .2915 .9935 .9935 .9925

(b) OB: generate ȳi. − µi by (6), compute TOB using (7)
if TOB > TObs, set IOB = I(TOB > TObs) = 1, (end loop)
POB =

∑5000
B=1 IOB/5000 is a MC estimate of the p-value of TOB.

(c) OBpred approach: generate ȳ∗

i.|Y and s2∗i |Y according to Eq. (8), compute Tpred using (9)
if Tpred > TObs, set Ipred = I(Tpred > TObs) = 1, (end loop)
Ppred =

∑5000
B=1 Ipred/5000 is a MC estimate of the p-value of Tpred.

(4) Repeat step (1) to step (3) 2000 times, calculate the proportion of rejections for the three cases when PPB, POB and
Ppred are less than significance level α.

Table 1 reported empirical significance levels of the tests. It shows that when the group sizes are small such as
n = (3, 5, 7), the empirical level from PB test is closer to the nominal level than the other two OB tests. When group sizes
are medium such as n = (7, 10, 13) or large such as n = (21, 30, 39), all the three tests perform comparably and control
the type I error reasonably well.

Table 2 reported power of the three tests under different settings given α = 0.05. We can see that for fixed standard
deviation, power increases when group size increases. For example, when fixing σ = (1, 1, 1), power for the PB test
5
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Fig. 1. PB, OB and OBpred Simulated Test Statistics Distribution.

ncreases from .5325 (small group) to .948 (medium group), and to 1.000 (large group). On the other hand, with fixed
roup size, power increases when standard deviation decreases. For example, the smallest standard deviation combination
= (1, 1, 1) setting always achieves the highest power. For another example, consider standard deviation σ = (4, 4, 4)

with group size of n = (3, 5, 7), and with alternative µ1 = 0, µ2 = 1, µ3 = 2, power of the three tests are as small as .082,
.031 and .03. This is because σ = (4, 4, 4) are large compared to group means µ1 = 0, µ2 = 1, µ3 = 2, and group size
s small, which reduce the statistical power dramatically. With the same group size and standard deviation combination,
ower under alternative µ1 = 0, µ2 = 3, µ3 = 6 is always greater than power under alternative µ1 = 0, µ2 = 1, µ3 = 2,

because µ1 = 0, µ2 = 3, µ3 = 6 is further apart from the null hypothesis. In general, power from PB test is higher than
the other two OB tests for small groups, and all the three tests perform comparably with similar statistical power for
medium or large groups.

5. Example

To illustrate the testing procedure in a more practical light, we demonstrate the PB and OB approaches for a real
one-way heteroscedastic ANOVA problem. The experiment consists of measuring insulin levels in rats a certain length
of time (0, 30 and 60 min) after a fixed dose of insulin was injected into their portal vein (Erhardt et al., 2016). The
experiment features groups of various sizes: a 0-min group (control group) with n1 = 12, a 30-min group with n2 = 10,
and a 60-min group with n3 = 12. A boxplot suggests that heteroscedasticity and outlier are both present. A Bartlett’s
test confirms the heteroscedasticity with a p-value of .011.

To conduct the PB and OB tests, first calculate the group means (ȳ1., ȳ2., ȳ3.) = (81.92, 172.90, 128.50), and sample
standard errors (s1, s2, s3) = (27.74, 76.12, 49.72). Next, calculate the observed test statistic TObs using Eq. (3) as 18.198.
Follow simulation step (3), we generated 5000 draws for TPB, TOB and Tpred, and obtained the generalized p-values
PPB = .0020, POB = .0035, and Ppred = .0028. For example, PPB = P[TPB > TObs] = 10/5000 = .0020. Hence, we reject H0
and conclude that time effect is significant, i.e., the mean insulin levels in rats after a fixed dose of insulin was injected
into their portal vein are significantly different for at least two time groups. Fig. 1 depicts the estimated distribution of
TPB, TOB and TOBpred under H0, along with a black vertical line indicating the observed test statistic. We can see from Fig. 1
that the three density curves are very close to each other. For comparison purpose, a regular ANOVA is performed after
a log transformation which is used to stabilize the unequal variance and to remove the outliers. The p-value of .0007459
shows a rejection of the equality of the group means as PB and OB tests do. One advantage of the PB and OB tests is that
they are simple to use. Another advantage is that they are easy to interpret since there is no transformation needed even
for unbalanced heteANOVA problem.

6. Conclusions

For one-way heteroscedastic ANOVA, the PB, OB, and OBpred approaches all control the type I error of the overall mean
tests well and have reasonable statistical powers when group sizes are not small. We proved that the PB, OB and OBpred
tests are asymptotically equivalent. Future work may investigate the robustness of the PB and OB tests to outliers, and
extend current research to multi-way ANOVA problem, and to problems under special designs such as the randomized
complete block design and split plot design.
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