
Statistics and Probability Letters 92 (2014) 125–131

Contents lists available at ScienceDirect

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

Simultaneous confidence intervals for several
inverse Gaussian populations
Guoyi Zhang
Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, 87131-0001, United States

a r t i c l e i n f o

Article history:
Received 16 March 2014
Received in revised form 18 May 2014
Accepted 25 May 2014
Available online 2 June 2014

Keywords:
Inverse Gaussian
Fiducial generalized pivotal quantities
(FGPQ)

Simultaneous confidence intervals
Simulations
Unequal scale parameter

a b s t r a c t

In this research,wepropose simultaneous confidence intervals for all pairwise comparisons
of means from inverse Gaussian distribution. Our method is based on fiducial generalized
pivotal quantities for vector parameters. We prove that the constructed confidence
intervals have asymptotically correct coverage probabilities. Simulation results show that
the simulated Type-I errors are close to the nominal level even for small samples. The
proposed approach is illustrated by an example.
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1. Introduction

Inverse Gaussian (IG) distribution is widely used to describe and analyze positively right-skewed data. For example, it
is useful to model lifetime distribution and wind energy distribution. Chhikara and Folks (1989, Ch.10) and Seshadri (1993,
1999) discussed some examples of IG distribution in fields such as cardiology, hydrology, demography and finance. Formany
observational and experimental data arising from several IG populations, the problem of testing equality (see Shi and Lv,
2012; Krishnamoorthy and Tian, 2008 etc.) and simultaneous pairwise comparisons (SPC) of the groupmeans are usually of
interest.

In standard analysis of variance, Scheffé’smethod (Scheffé, 1959), the Bonferroni inequality-basedmethod, and the Tukey
method (Tukey, 1953) are widely used for SPC. When variances are heteroscedastic and group sizes are unequal, exact
frequentist tests are unavailable. In such situations, parametric bootstrap and generalized p-value (Tsui and Weerahandi,
1989) procedures are commonly used. Zhang (in press, 2014b) proposed parametric bootstrap simultaneous confidence
intervals (SCI) for one-way and two-way ANOVA under heteroscedasticity. Weerahandi (1993) introduced the concept of a
generalized pivotal quantity. Later, Hannig et al. (2006) introduced a subclass of Weerahandi’s generalized pivotal quantity,
called fiducial generalized pivotal quantities (FGPQs). Using the idea of FGPQ, Hannig et al. (2006) proposed simultaneous
fiducial generalized confidence intervals for ratios of means of log-normal distributions. Xiong andMu (2009) proposed two
kinds of SCI based on FGPQ in a one-way layout under heteroscedasticity. Recently, Ye et al. (2014) discussed the reliability
issue in one-way randommodels based on generalized pivotal quantities and FGPQ. Zhang and Falk (2014) proposed FGPQ-
based SCI for several log-normal distributions. To our knowledge, there is no work on SCI for all-pairwise comparisons of IG
distributions. In this research, we propose to construct FGPQ-based SCI for IG distributions to fill the gap.

This paper is organized as follows. In Section 2, we review IG distribution and several generalized pivotal quantities.
In Section 3, we propose FGPQ-based SCI for means from several IG distributions and prove the asymptotic properties.
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In Section 4, we present simulation studies from the perspective of Type-I error and power of the tests. In Section 5, we give
an example to illustrate the proposed approach. Section 6 gives conclusions.

2. Background

The density function of the two-parameter IG distribution IG(µ, λ) is defined as

f (x, µ, λ) =


λ

2πx3

1/2

exp

−

λ

2µ2x
(x − µ)2


, x > 0, µ, λ > 0 (1)

where µ is the mean parameter and λ is the scale parameter. Let Xij ∼ IG(µi, λi), i = 1, . . . , k, j = 1, . . . , ni be an
independent random sample from k IG populations. Let n =

k
i=1 ni be the total sample size, and X̄i =

ni
j=1 Xij/ni be

the group mean. The maximum likelihood estimators of µi and λi can be found as

µ̂i = X̄i, 1/λ̂i =
1
ni

ni
j=1

(1/Xij − 1/X̄i).

To simplify notation, let Vi = 1/λ̂i. It is well known that

X̄i ∼ IG(µi, niλi), niλiVi ∼ χ2
ni−1, i = 1, 2, . . . , k, (2)

X̄i and Vi are complete sufficient statistics for (µi, λi) and are mutually independent.
Ye et al. (2010) proposed the generalized pivotal quantities for λi and µi as follows

Ri =
niλiVi

nivi
∼

χ2
ni−1

nivi
, i = 1, . . . , k, (3)

and

Tµi =
x̄i1 +

√
niλi(X̄i−µi)

µi
√

X̄i


x̄i

niRi


d
∼

x̄i1 + Zi


x̄i
niRi

 , (4)

where
d
∼ denotes ‘‘approximately distributed’’, Zi ∼ N(0, 1), and x̄i and vi are the observed values of X̄i and Vi. The

approximate distribution comes from themomentmatchingmethod, that
√
niλi(X̄i−µi)/(µi


X̄i)has a limiting distribution

of N(0, 1). By substituting Ri in (4) with (3), Krishnamoorthy and Tian (2008) proposed an approximate generalized pivotal
quantity for µi as follows

T ∗

µi
=

x̄i

max

0, 1 + tni−1


x̄ivi
ni−1

 . (5)

One problem of the pivotal quantity T ∗
µi

is that the denominator may be zero when tni−1 takes a negative value. To overcome
this problem, Shi and Lv (2012) proposed a generalized pivotal quantity for the reciprocal of µi, say θi = 1/µi by

Tθi =
1
Tµi

d
∼

1 + Zi


x̄i
niRi

 /x̄i. (6)

Note that the observed value of Tθi is θi and the distribution of Tθi is free of any unknown parameter. Therefore, Tθi is a
generalized pivotal quantity for θi. Based on the pivotal quantity Tθi , Shi and Lv (2012) proposed a new generalized p-value
procedure for testing equality of inverse Gaussian means under heterogeneity.

3. Simultaneous confidence intervals for k inverse Gaussian populations

In this section, we propose FGPQ-based SCI for all-pairwise comparisons of means from k IG populations. The testing
problem is as follows

H0 : θi = θj for all i ≠ j vs Hα : θis are not all equal. (7)

Inspired by Shi and Lv (2012), we define FGPQ’s for λi and θi as

Rλi =
U2
i

niVi
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and

Rθi =

1 + Zi


X̄i

niRλi

 /X̄i =

1 + Zi


X̄iVi

U2
i

 /X̄i,

where U2
i ∼ χ2

ni−1, i = 1, . . . , k. Define θij = θi − θj. The FGPQ for θij follows immediately

Rθij = Rθi − Rθj =

1 + Zi


X̄iVi

U2
i

 /X̄i −

1 + Zj


X̄jVj

U2
j

 /X̄j. (8)

Let X̄ = (X̄1, . . . , X̄k)
′ and V = (V1, V2, . . . , Vk)

′. The conditional expectation and variance of Rθij can be derived as follows

ηij = E(Rθij |X̄,V) = 1/X̄i − 1/X̄j, (9)

Vij = Var(Rθij |X̄,V) =
Vi

(ni − 3)X̄i
+

Vj

(nj − 3)X̄j
. (10)

As pointed by Xiong and Mu (2009), FGPQs can be used to provide effective approximations to distributions. The
distribution of

max
i<j

θij − E(Rθij |X̄,V)
Var(Rθij |X̄,V)


can be approximated by the conditional distribution of

Q = max
i<j

Rθij − E(Rθij |X̄,V)
Vij

 . (11)

Let qα be the conditional upper αth quantile of Q . We propose the (1 − α)100% simultaneous confidence intervals for θij as

θij ∈
1
X̄i

−
1
X̄j

± qα


Vij for all i < j. (12)

Algorithm 1 is proposed to calculate qα .

Algorithm 1.
For given observations xij, i = 1, . . . , k, j = 1, . . . , ni,
Compute x̄i and vi, i = 1, . . . , k
For l = 1, 2, . . . , L
Generate Zi ∼ N(0, 1) and U2

i ∼ χ2
ni−1, i = 1, . . . , k

Compute Rθij , ηij, Vij, and Ql using Eqs. (8)–(11) respectively
End l loop.
Compute q(α), the (1 − α)100% percentile of Q .

We now examine the properties of the SCIs in (12). The following theorems show that the proposed SCIs have
asymptotically correct coverage probabilities. Proof of Theorem 1 is included in the Appendix.

Theorem 1. Let Xi1, . . . , Xini , i = 1, . . . , k be random samples from k IG populations and be mutually independent. Assume that
0 < σ 2

i = Var(Xi1) < ∞, µi = E(Xi1),N =
k

i=1 ni and
ni
N → τi ∈ (0, 1) as N → ∞ for all i, we have

P


1
µi

−
1
µj

∈
1
X̄i

−
1
X̄j

± q(α)

Vij for all i < j


p

→ 1 − α.

Theorem 2. With the same assumptions set out in Theorem 1, we have

P(Ln < µi − µj < Un for all i < j)
p

→ 1 − α,

where

Ln = Kn


1
X̄i

−
1
X̄j

+ qα


Vij


Un = Kn


1
X̄i

−
1
X̄j

− qα


Vij


Kn = −µ̂iµ̂j = −X̄iX̄j.
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Table 1
Simulated Type-I errors of the proposed multiple comparison procedure for three groups: numbers in table are simulated Type-I errors.

(µ, σ) n(3)
1 n(3)

2 n(3)
3

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(µ
(3)
1 , λ

(3)
1 ) 0.0120 0.0515 0.1010 0.0075 0.0435 0.0775 0.0090 0.0430 0.0810

(µ
(3)
1 , λ

(3)
2 ) 0.0080 0.0435 0.0845 0.0050 0.0390 0.0825 0.0065 0.0430 0.0935

(µ
(3)
1 , λ

(3)
3 ) 0.0090 0.0470 0.0910 0.0090 0.0430 0.0910 0.0115 0.0565 0.0950

(µ
(3)
2 , λ

(3)
1 ) 0.0130 0.0555 0.1140 0.0085 0.0580 0.1105 0.0100 0.0515 0.0980

(µ
(3)
2 , λ

(3)
2 ) 0.0075 0.0440 0.0870 0.0115 0.0490 0.0940 0.0115 0.0415 0.0865

(µ
(3)
2 , λ

(3)
3 ) 0.0080 0.0435 0.0955 0.0100 0.0510 0.1065 0.0135 0.0595 0.1155

(µ
(3)
3 , λ

(3)
1 ) 0.0165 0.0675 0.1310 0.0125 0.0535 0.1135 0.0120 0.0485 0.0965

(µ
(3)
3 , λ

(3)
2 ) 0.0100 0.0505 0.1015 0.0140 0.0530 0.1040 0.0115 0.0470 0.1000

(µ
(3)
3 , λ

(3)
3 ) 0.0120 0.0560 0.1120 0.0095 0.0530 0.1095 0.0070 0.0495 0.1015

Proof. It follows from Theorem 1 and the facts that X̄i
p

→ µi and X̄j
p

→ µj. �

4. Simulations

In this section, we use simulations to evaluate the proposed SCIs by Type-1 error and power of the tests under various
settings. The simulation studywas performedwith factors: (1) number of groups k: k = 3, k = 6 and k = 10; (2) population
scale parameter λ

(k)
h = (λ1, . . . , λk): various combinations, h = 1, 2, 3; (3) population mean µ

(k)
h = (µ1, . . . , µk): various

combinations; (4) significance level α: 0.01, 0.05 and 0.1; (5) group sizes n(k)
h = (n1, . . . , nk): various combinations. The

specific combinations are given in the following paragraph.
For Tables 1–3: for three groups k = 3, group sizes are with n(3)

1 = (10, 16, 20),n(3)
2 = (10, 10, 10),n(3)

3 = (20, 16, 10),
populationmeans arewithµ

(3)
1 = (1, 1, 1),µ(3)

2 = (5, 5, 5), µ(3)
3 = (10, 10, 10), scale parameters arewithλ

(3)
1 = (1, 5, 10),

λ
(3)
2 = (5, 5, 5), λ(3)

3 = (10, 5, 1); for six groups k = 6, group sizes are with n(6)
1 = (10, 10, 16, 16, 20, 20),n(6)

2 =

(10, 10, 10, 10, 10, 10),n(6)
3 = (20, 20, 16, 16, 10, 10), population means are with µ

(6)
1 = (1, 1, 1, 1, 1, 1), µ(6)

2 =

(5, 5, 5, 5, 5, 5), µ(6)
3 = (10, 10, 10, 10, 10, 10), population scale parameters are with λ

(6)
1 = (1, 1, 5, 5, 10, 10), λ(6)

2 =

(5, 5, 5, 5, 5, 5), λ(6)
3 = (1, 1, 10, 10, 5, 5); for ten groups k = 10, group sizes are with n(10)

1 = (10, 10, 10, 16, 16, 16, 20,
20, 20, 20), n(10)

2 = (10, 10, 10, 10, 10, 10, 10, 10, 10, 10), n(10)
3 = (20, 20, 20, 20, 16, 16, 16, 10, 10, 10), population

means are with µ
(10)
1 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), µ(10)

2 = (5, 5, 5, 5, 5, 5, 5, 5, 5, 5), µ(10)
3 = (10, 10, 10, 10, 10, 10, 10,

10, 10, 10), population scale parameters are with λ
(10)
1 = (0.5, 0.5, 0.5, 2.5, 2.5, 2.5, 5, 5, 5, 5), λ(10)

2 = (2.5, 2.5, 2.5, 2.5,
2.5, 2.5, 2.5, 2.5, 2.5, 2.5), and λ

(10)
3 = (0.5, 0.5, 0.5, 5, 5, 5, 5, 2.5, 2.5, 2.5).

For a given sample size and parameter configuration, we generated 2000 observed vectors (x̄1, . . . , x̄k, v1, . . . , vk) by
x̄i ∼ IG(µi, niλi) and vi ∼ χ2

ni−1/(niλi). For each generated vector, we use 5000 runs to estimate the conditional upper αth
quantile qα by Algorithm 1. Finally, we report the simulated type I error probability for simultaneous tests in (7) and power
of the tests. The following algorithm is used to find the simulated type-I error and power of the test:

Algorithm 2.
For m = 1, 2, . . . ,M
Generated vector (x̄(m)

1 , . . . , x̄(m)
k , v

(m)
1 , . . . , v

(m)
k ):

Calculate q(m)
ij = |1/x̄(m)

i − 1/x̄(m)
j |/


v

(m)
ij , i, j = 1, . . . , k, i < j, let q(m)

= max(q(m)
ij )

Use Algorithm 1 to find q(m)
α , the 1 − α percentile of the simulated distribution of Q

endm loop.
The simulated Type-I error is the proportion of theM simulations when q(m) > q(m)

α .

Tables 1–3 report the simulated Type-I error of the suggested simultaneous pairwise comparison procedure. From
Tables 1–3, we can see that the simulated Type-I errors are close to the nominal level. Taking a closer look, we found that
Type-1 error reported in Table 3 (k = 10) is slightly inflated compared to those for six groups and three groups. Notice that
we have greater number of pairwise comparisons (45 pairs (k = 10) v.s. 15 pairs (k = 6)), and bigger variance (smaller λs)
in Table 3 settings. We suggest increasing number of units within each group for experiments with larger number of groups
and larger variance.

Table 4 reports the simulation results for power of the multiple comparisons. It is clear that power of the tests increased
when sample size increased. Power of the tests also increased with decreased variances (increased λs), i.e., it is more easy to
detect the difference in means when variance is small. Under most of the settings, we have 100% of the confidence to detect
the difference of the group means.
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Table 2
Simulated Type-I errors of the proposed multiple comparison procedure for six groups: numbers in table are simulated Type-I errors.

(µ, σ) n(6)
1 n(6)

2 n(6)
3

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(µ
(6)
1 , λ

(6)
1 ) 0.0135 0.0545 0.1005 0.0090 0.0480 0.0855 0.0045 0.0420 0.0880

(µ
(6)
1 , λ

(6)
2 ) 0.0060 0.0490 0.0980 0.0065 0.0370 0.0770 0.0070 0.0460 0.0960

(µ
(6)
1 , λ

(6)
3 ) 0.0105 0.0515 0.0925 0.0095 0.0420 0.0890 0.0070 0.0410 0.0875

(µ
(6)
2 , λ

(6)
1 ) 0.0115 0.0610 0.1140 0.0105 0.0555 0.1025 0.0095 0.0460 0.0900

(µ
(6)
2 , λ

(6)
2 ) 0.0095 0.0495 0.0950 0.0050 0.0425 0.0850 0.0090 0.0435 0.0870

(µ
(6)
2 , λ

(6)
3 ) 0.0115 0.0545 0.1085 0.0135 0.0540 0.1045 0.0105 0.0500 0.1020

(µ
(6)
3 , λ

(6)
1 ) 0.0140 0.0585 0.1170 0.0100 0.0590 0.1170 0.0115 0.0530 0.1020

(µ
(6)
3 , λ

(6)
2 ) 0.0140 0.0615 0.1025 0.0135 0.0605 0.1115 0.0085 0.0635 0.1245

(µ
(6)
3 , λ

(6)
3 ) 0.0120 0.0565 0.1040 0.0150 0.0680 0.1270 0.0120 0.0555 0.1195

Table 3
Simulated Type-I errors of the proposed multiple comparison procedure for ten groups: numbers in table are simulated Type-I errors.

(µ, σ) n(10)
1 n(10)

2 n(10)
3

α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

(µ
(10)
1 , λ

(10)
1 ) 0.0105 0.0545 0.1125 0.0120 0.0560 0.1110 0.0055 0.0485 0.0920

(µ
(10)
1 , λ

(10)
2 ) 0.0055 0.0390 0.0805 0.0090 0.0370 0.0765 0.0055 0.0385 0.0785

(µ
(10)
1 , λ

(10)
3 ) 0.0155 0.0610 0.1100 0.0105 0.0445 0.1045 0.0110 0.0405 0.0805

(µ
(10)
2 , λ

(10)
1 ) 0.0125 0.0585 0.1155 0.0120 0.0535 0.1130 0.0140 0.0645 0.1255

(µ
(10)
2 , λ

(10)
2 ) 0.0115 0.0520 0.1040 0.0105 0.0570 0.1185 0.0125 0.0520 0.1070

(µ
(10)
2 , λ

(10)
3 ) 0.0130 0.0620 0.1200 0.0150 0.0690 0.1240 0.0165 0.0660 0.1180

(µ
(10)
3 , λ

(10)
1 ) 0.0165 0.0680 0.1245 0.0190 0.0725 0.1350 0.0135 0.0715 0.1320

(µ
(10)
3 , λ

(10)
2 ) 0.0200 0.0670 0.1360 0.0160 0.0870 0.1510 0.0200 0.0820 0.1555

(µ
(10)
3 , λ

(10)
3 ) 0.0145 0.0610 0.1190 0.0150 0.0755 0.1330 0.0135 0.0655 0.1250

Table 4
Simulation result for power of the multiple comparisons: numbers in table are power of the test.
Group sizes are with n(3)

1∗ = (10, 16, 20) = n(3)
1 , n(3)

2∗ = (50, 50, 50) and n(3)
3∗ = (50, 80, 100); scale

parameters are with λ
(3)
1∗ = (1, 1, 1), λ(3)

2∗ = (5, 5, 5) = λ
(3)
2 , λ

(3)
3∗ = (1, 5, 10).

µ
(3)
h∗ (λ

(3)
h∗ ,n(3)

h∗ ) α = 0.01 α = 0.05 α = 0.1

µ
(3)
1∗ = (1, 2, 1) (λ

(3)
1∗ ,n(3)

1∗ ) 0.1040 0.2930 0.4190
(λ

(3)
1∗ ,n(3)

2∗ ) 0.6030 0.8270 0.9025
(λ

(3)
1∗ ,n(3)

3∗ ) 0.8630 0.9570 0.9795
(λ

(3)
2∗ ,n(3)

1∗ ) 0.7640 0.9350 0.9655
(λ

(3)
3∗ ,n(3)

1∗ ) 0.8905 0.9720 0.9900

µ
(3)
2∗ = (1, 5, 1) (λ

(3)
1∗ ,n(3)

1∗ ) 0.5110 0.7975 0.8785

µ
(3)
3∗ = (1, 5, 10) (λ

(3)
1∗ ,n(3)

1∗ ) 0.3240 0.6660 0.8240
(λ

(3)
3∗ ,n(3)

1∗ ) 0.3920 0.7655 0.9115

All other combinations 1 1 1

5. Example

In this section, we use an example (follows from Ye et al., 2010) to illustrate the usage of the proposed FGPQ-based SCI
in practice. This data set was provided by National Transportation Safety Administration. The experiments were given by
crashing the stock automobiles into a wall at 35MPH with dummies in the driver and front passenger seat. The response
variable ‘‘injury’’ describes the extent of head injuries, chest deceleration, and left and right femur load. We consider
simultaneous comparisons (refer to (7)) of the left femur load injuries among three car makes: Dodge (group 1), Honda
(group 2) and Hyundai (group 3). The summary statistics are as follows: n1 = 8, n2 = 7, n3 = 5; x̄1 = 8.578, x̄2 =

8.053, x̄3 = 15.968; v1 = 0.0254, v2 = 0.0214, and v3 = 0.0164. Using our proposed method, we found that µ1 − µ2 ∈

(−5.3775, 6.4275), µ1 − µ3 ∈ (−18.3691, 3.5891), µ2 − µ3 ∈ (−18.5530, 2.7230). We see that the confidence intervals
involving µ3 are wider than the confidence interval of µ1 − µ2, as x̄3 is far different from x̄1 and x̄2. Since the simultaneous
confidence intervals all include 0, we conclude that simultaneously, the left femur loads are not different among these three
car makes at 5% nominal level. This result is consistent with the overall tests by Tian (2006) and Ye et al. (2010).
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6. Conclusions

IG distribution iswidely used to describe and analyze positively right-skeweddata. To our knowledge, there is noprevious
work on simultaneous pairwise comparisons of IG distributions. In this article, we propose an FGPQ-based new method to
construct simultaneous confidence intervals for means from several IG distributions. Simulation studies show that these
intervals perform well from Type-I error and power perspective. We also prove that the constructed confidence intervals
have correct asymptotic coverage probabilities. The proposed methods could be applied to group mean comparisons when
data are arising from IG distributions. The approach in constructing the SCIs could be extended to all pairwise comparisons
from multivariate IG distributions.
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Appendix

Proof of Theorem 1.

Proof. By the central limit theorem, we have
√
N

(η12 − θ12), (η13 − θ13), . . . , (ηk−1,k − θk−1,k)

 d
→ N(0,U),

where U is an k(k− 1)/2× k(k− 1)/2 positive definite matrix and uab, a, b = 1, 2, · · · , k(k− 1)/2 is the (a, b)th entry. Let
ξij be the variance of ηij. It can be shown that

ξij = Var

E(Rθij |X̄,V)


= Var


1
X̄i

−
1
X̄j


=

θi

niλi
+

θj

njλj
+

2
(niλi)2

+
2

(njλj)2
,

uaa =
θi

τiλi
+

θj

τjλj

and

NVij →
θi

τiλi
+

θj

τiλj

almost surely. Therefore,
η12 − θ12

√
V12

,
η13 − θ13

√
V13

, . . . ,
ηk−1,k − θk−1,k

Vk−1,k


d

→ N(0,U∗),

where the (a, b)th entry ofU∗ is uab/
√
uaaubb. Take a random vector (Z1, Z2, . . . , Zk(k−1)/2) distributed according toN(0,U∗).

By the continuous mapping theorem

max
i<j

θij − ηij
Vij

 d
→ max |Za|

for 1 ≤ a ≤ k(k − 1)/2.
For i = 1, . . . , k, U2

i /ni
p

→ 1. For all i ≠ j,

√
N(Rθij − ηij) =

1 + Zi


X̄iVi
U2
i


x̄i

−

1 + Zi


X̄iVi
U2
i


x̄i

−
1

X̄i/
√
n

+
1

X̄j/
√
n

= Zi


θi

Ziλi
− Zj


θj

Zjλj
+ op(1) (13)

conditionally on T = (X̄,V) almost surely.
Recall that NVij →

θi
τiλi

+
θj

τiλj
almost surely and note that (13) implies

max
i<j

Rθij − ηij
Vij

 d
→ max

1≤a≤k(k−1)/2
|Za| (14)
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on T almost surely. Let F be the cumulative distribution function of max1≤a≤k(k−1)/2 |Za|. By the continuity of F

sup
x

|Fn(x|T ) − F(x)| → 0

almost surely, where Fn is the conditional distribution function of the left side of (14). As a result,

P

θij ∈ ηij ± q(α)


Vij for all i < j


= P


Fn


max
i<j

θij − ηij
Vij


T


≤ 1 − α



= P


F


max
i<j

θij − ηij
Vij




+ op(1) ≤ 1 − α


d

→ 1 − α. �
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