Linear Models

e A linear model is defined by the expression
x=Fp+e.

!/ . .
where x = (x1,22,...,%y,) is vector of size n usually

known as the response wvector.

B =(B1,02,... ,ﬁp)/ is the transpose of a vector of

dimension p also known as parameter vector.

F' is a matrix of known elements and of dimension n X p

with rows denoted by fz-/ also known as design matrix.

! . . .
€ = (€1,€9,...,€,) is a vector of size n that contain the

models errors.

These errors are usually assumed iid with e; ~ N(0, 0?)
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Least squares: Find the value of 5 so that the sum of

squares S = (z — F3) (x — F3) reaches its minimum.

MLE: Find the value of 5 that produces the maximum
likelihood.

Under normality and assuming o2 known, the

log-likelihood for 3 is given by

I(8) = ¢ — (n/2)log(0?) - (1/20°)(x — FB) (z — FJ3)

Also under normality, the MLE and LSE of 3 is

A

b= (F F)™'F (= p)

Other concepts: The residual sum of squares is
R = (x — Fb) (z — Fb)
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This sum of squares is associated with n — p degrees of

freedom since R/o? ~ x7_,.

An unbiased estimate of the variance is s = R/(n — p)
which is not the same to the MLE of 02 (02 = R/n).

We also have the sum of squares factorization
tx=R+bF Fb.

“Total sum of squares is equal to the residual sum of

squares plus the regression sum of squares”.
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Bayesian Statistics

e The main goal of Bayesian analysis is to incorporate prior

information into statistical modeling.

This leads into the treatment of “observations” and

“parameters” as random variables.
A Bayesian model is established in a hierarchical way.

First we define a probability distribution for the

observations (likelihood) given a specific value of the

parameter

f(xtha .. axn‘9>

We also specify a probability distribution for § known,
the prior distribution p(#), which reflects the current
state of knowledge for 6.
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After a likelithood and a prior are specified, Bayesians
compute the posterior distribution given by Bayes

Theorem
p(9‘$17x27 .. axn) X f(ajl,CUQ, .. ,wn‘9>p(9)

The proportionality constant is given by the marginal
distribution of the data

p(azl,azg,...,a:n):/f(a:l,ajg,...,a:nle)p(e)dﬁ

All the inferences are based on the posterior distribution.

If we wish to estimate 6, we could use the posterior

expectation

E(0]x) = /e p(6]2)d6
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where x represents the data vector x = (x1,a,...,Zy).

If we want to predict a future value s we use the

predictive distribution of x given the data x,

plasle) = [ plaslo.z)p(6l)as

Usually the computations related to Bayesian Statistics
require numerical evaluation of complicated integrals

except in specific cases known as conjugate models.
Example of conjugate model: Binomial data-Beta prior.

Outside conjugate models it is usually hard to determine
a prior distribution (requires scientific and probability

knowledge).

To deal with this problem, some statisticians appeal to
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non-informative (objective) prior distributions.

Non-informative priors have the purpose of reflecting lack
of prior knowledge. A starting point to run Bayes

machinery.
Non-informative priors are also known as reference priors.

An intuitive choice for a non-informative prior is the

Uniform

p(f) o< 1

also known as flat prior.

Both Bayes and Laplace proposed this prior as a default

non-informative prior.

However, this prior distribution is not invariant for

one-to-one transformations.
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A famous probabilist, Jeffreys, derived the invariant

non-informative prior.

Jeffreys’ rule p(0) o< |I(0)|'/? where I(6) denotes Expected
information. 1(0) = Exg (_ d2log f(a?|9)>

d?6

In the Binomial-Beta example, Jeflreys’ prior is:

p(0) o 7 H2(1 — g)~1/2

If we have a probability model with a location parameter

1 and a scale parameter o2, Jeffreys’ prior becomes:
p(p, %) o< 1/0?

For more information about Bayesian Statistics you may
want to check Tim Hanson’s course page.
http://www.stat.unm.edu/~hanson/stab79/sta579.html
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Summary of Bayes results for the Linear Model

For the linear model, 5 and o2 are essentially

location/scale parameters.

The default non-informative prior for 4 and o? is:
p(f,0%) o< 1/0”
With Bayes theorem the posterior distribution is given by
p(B,0%a, F) o f(x]8,0%)(1/0?)

Under this prior, the posterior distribution for (3, 0?) is a

Normal-Gamma distribution.

Conditional on ¢, the posterior for 3 is a p-dimensional

Normal with mean b and a covariance matrix 02(F/F)_1
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or B~ N(b,o?(F F)™1).

2

The marginal posterior distribution for o is an Inverse

Gamma with shape parameter n/2 and scale parameter

R/2 or 0° ~ IG(n/2,R/2)
The product of this p-dimensional Normal and the

Inverse Gamma defines the Normal/Gamma posterior.

For the marginal posterior distribution of 3 we need
p(Ble. F) = [ p(8,0%|z, F)do?

After some algebraic manipulation, it can be shown that

p(Blz, F) = c(n,p)|F'F|'/?/(1+(8—b) F' F(8—b)/ps*)"/?

Roughly, for n large p(8|z, F) ~ N (b, s*>(F' F)™1).
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The marginal density of z given F' is,

p(z|F) = /p(ﬂﬁ‘\ﬁ,UQ)p(ﬁ,JQ)dﬁdJQ — ¢|F F|71/2/R(n=P)/2

Due to the sum of squares factorization, we can establish
that

p(alF) o |F'F| V21— b F b/ (a'2)) =)/

If we think of F' as a “parameter”, p(z|F) is a likelihood
that could be used to produce inferences on F' or on

quantities that determine F' (marginal likelihood).

Under orthogonality of the F' matrix, the evaluation of

p(xz|F') becomes really easy.
F orthogonal means that F'F = kI
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