
Linear Models

• A linear model is defined by the expression

x = Fβ + ε.

• where x = (x1, x2, . . . , xn)
′

is vector of size n usually

known as the response vector.

• β = (β1, β2, . . . , βp)
′

is the transpose of a vector of

dimension p also known as parameter vector.

• F is a matrix of known elements and of dimension n × p

with rows denoted by f
′

i also known as design matrix.

• ε = (ε1, ε2, . . . , εn)
′

is a vector of size n that contain the

models errors.

• These errors are usually assumed iid with εi ∼ N(0, σ2)
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• Least squares: Find the value of β so that the sum of

squares S = (x − Fβ)
′

(x − Fβ) reaches its minimum.

• MLE: Find the value of β that produces the maximum

likelihood.

• Under normality and assuming σ2 known, the

log-likelihood for β is given by

l(β) = c − (n/2)log(σ2) − (1/2σ2)(x − Fβ)
′

(x − Fβ)

• Also under normality, the MLE and LSE of β is

b = (F
′

F )−1F
′

x(= β̂)

• Other concepts: The residual sum of squares is

R = (x − Fb)
′

(x − Fb)

154



• This sum of squares is associated with n − p degrees of

freedom since R/σ2 ∼ χ2
n−p.

• An unbiased estimate of the variance is s2 = R/(n − p)

which is not the same to the MLE of σ2 (σ̂2 = R/n).

• We also have the sum of squares factorization

x
′

x = R + b
′

F
′

Fb.

• “Total sum of squares is equal to the residual sum of

squares plus the regression sum of squares”.
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Bayesian Statistics

• The main goal of Bayesian analysis is to incorporate prior

information into statistical modeling.

• This leads into the treatment of “observations” and

“parameters” as random variables.

• A Bayesian model is established in a hierarchical way.

• First we define a probability distribution for the

observations (likelihood) given a specific value of the

parameter

f(x1, x2, . . . , xn|θ)

• We also specify a probability distribution for θ known,

the prior distribution p(θ), which reflects the current

state of knowledge for θ.
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• After a likelihood and a prior are specified, Bayesians

compute the posterior distribution given by Bayes

Theorem

p(θ|x1, x2, . . . , xn) ∝ f(x1, x2, . . . , xn|θ)p(θ)

• The proportionality constant is given by the marginal

distribution of the data

p(x1, x2, . . . , xn) =

∫

f(x1, x2, . . . , xn|θ)p(θ)dθ

• All the inferences are based on the posterior distribution.

• If we wish to estimate θ, we could use the posterior

expectation

E(θ|x) =

∫

θ p(θ|x)dθ
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where x represents the data vector x = (x1, x2, . . . , xn).

• If we want to predict a future value xf we use the

predictive distribution of xf given the data x,

p(xf |x) =

∫

p(xf |θ, x)p(θ|x)dθ

• Usually the computations related to Bayesian Statistics

require numerical evaluation of complicated integrals

except in specific cases known as conjugate models.

• Example of conjugate model: Binomial data-Beta prior.

• Outside conjugate models it is usually hard to determine

a prior distribution (requires scientific and probability

knowledge).

• To deal with this problem, some statisticians appeal to
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non-informative (objective) prior distributions.

• Non-informative priors have the purpose of reflecting lack

of prior knowledge. A starting point to run Bayes

machinery.

• Non-informative priors are also known as reference priors.

• An intuitive choice for a non-informative prior is the

Uniform

p(θ) ∝ 1

also known as flat prior.

• Both Bayes and Laplace proposed this prior as a default

non-informative prior.

• However, this prior distribution is not invariant for

one-to-one transformations.
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• A famous probabilist, Jeffreys, derived the invariant

non-informative prior.

• Jeffreys’ rule p(θ) ∝ |I(θ)|1/2 where I(θ) denotes Expected

information. I(θ) = EX|θ

(

−d2log f(x|θ)
d2θ

)

• In the Binomial-Beta example, Jeffreys’ prior is:

p(θ) ∝ θ−1/2(1 − θ)−1/2

• If we have a probability model with a location parameter

µ and a scale parameter σ2, Jeffreys’ prior becomes:

p(µ, σ2) ∝ 1/σ2

• For more information about Bayesian Statistics you may

want to check Tim Hanson’s course page.

http://www.stat.unm.edu/∼hanson/sta579/sta579.html
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Summary of Bayes results for the Linear Model

• For the linear model, β and σ2 are essentially

location/scale parameters.

• The default non-informative prior for β and σ2 is:

p(β, σ2) ∝ 1/σ2

• With Bayes theorem the posterior distribution is given by

p(β, σ2|x, F ) ∝ f(x|β, σ2)(1/σ2)

• Under this prior, the posterior distribution for (β, σ2) is a

Normal-Gamma distribution.

• Conditional on σ2, the posterior for β is a p-dimensional

Normal with mean b and a covariance matrix σ2(F
′

F )−1
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or β ∼ N(b, σ2(F
′

F )−1).

• The marginal posterior distribution for σ2 is an Inverse

Gamma with shape parameter n/2 and scale parameter

R/2 or σ2 ∼ IG(n/2, R/2)

• The product of this p-dimensional Normal and the

Inverse Gamma defines the Normal/Gamma posterior.

• For the marginal posterior distribution of β we need

p(β|x, F ) =

∫

p(β, σ2|x, F )dσ2

• After some algebraic manipulation, it can be shown that

p(β|x, F ) = c(n, p)|F
′

F |1/2/(1+(β−b)
′

F
′

F (β−b)/ps2)n/2

• Roughly, for n large p(β|x, F ) ≈ N(b, s2(F
′

F )−1).
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• The marginal density of x given F is,

p(x|F ) =

∫

p(x|β, σ2)p(β, σ2)dβdσ2 = c|F
′

F |−1/2/R(n−p)/2

• Due to the sum of squares factorization, we can establish

that

p(x|F ) ∝ |F
′

F |−1/2(1 − b
′

F
′

Fb/(x
′

x))(p−n)/2

• If we think of F as a “parameter”, p(x|F ) is a likelihood

that could be used to produce inferences on F or on

quantities that determine F (marginal likelihood).

• Under orthogonality of the F matrix, the evaluation of

p(x|F ) becomes really easy.

• F orthogonal means that F
′

F = kI
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