ACF and PACF of an AR(p)

- We will only present the general ideas on how to obtain the ACF and PACF of an $\operatorname{AR}(p)$ model since the details follow closely the $\mathrm{AR}(1)$ and $\mathrm{AR}(2)$ cases presented before.
- Recall that $\operatorname{AR}(p)$ model is given by the equation

$$
X_{t}=\phi_{1} X_{t-1}+\phi_{2} X_{t-2}+\ldots+\phi_{p} X_{t-p}+\omega_{t}
$$

- For the ACF, first we multiply by X_{t-k} both side of the autoregressive model equation to obtain,

$$
X_{t-k} X_{t}=\phi_{1} X_{t-k} X_{t-1}+\ldots+\phi_{p} X_{t-k} X_{t-p}+\omega_{t} X_{t-k}
$$

- By taking expectation at both sides this equation, we get

$$
\rho_{k}=\phi_{1} \rho_{k-1}+\phi_{2} \rho_{k-2}+\ldots+\phi_{p} \rho_{k-p}
$$

or written in lag-operator

$$
\Phi(B) \rho_{k}=0
$$

with $\Phi(B)=1-\phi_{1} B-\phi_{2} B^{2}-\ldots-\phi_{p} B^{p}$

- The implied set of equations for different values of $k=1,2, \ldots$, are known as Yule-Walker equations.
- We try again a solution of the form $\rho_{k}=\lambda^{k}$. which leads to the equation

$$
\lambda^{p}-\phi_{1} \lambda^{p-1}-\phi_{2} \lambda^{p-2}-\ldots-\phi_{p}=0
$$

- The solutions to this equation are the reciprocal roots
$\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$ of the characteristic polynomial $\Phi(B)$
- The general solution for the difference equation is

$$
\rho_{k}=\sum_{i=1}^{p} A_{i}\left(\alpha_{i}\right)^{k}=A_{1}\left(\alpha_{1}\right)^{k}+A_{2}\left(\alpha_{2}\right)^{k}+\ldots A_{p}\left(\alpha_{p}\right)^{k}
$$

- ρ_{k} has an exponential behavior and cyclical patterns (damped sine wave) may appear if some of the $\alpha_{j}^{\prime} s$ are complex numbers
- Theorem. Given a general difference equation of the form $C(B) Z_{t}=0$ where
$C(B)=1+C_{1} B+C_{2} B^{2}+\ldots C_{n} B^{n}$ and $C(B)=\prod_{i=1}^{n}\left(1-R_{i} B\right)$ so the $R_{i}^{\prime} s$ are the reciprocal roots of the equation $C(B)=0$, we have that the solution is $Z_{t}=\sum_{i=1}^{n} A_{i} R_{i}^{t}$ (without proof).
- For the PACF we can apply Cramer's rule for $k=1, \ldots, p$ which can gives us an expression for $P_{k k}$.
- If $k>p$, then $P_{k k}=0$ so the PACF of an $\operatorname{AR}(p)$ must cut down to zero after lag $k=p$, where p is the order of the AR model.

ACF and PACF for Moving Average models

- Lets start with the MA(1) given the equation

$$
X_{t}=\omega_{t}+\theta \omega_{t-1}
$$

with θ the model parameter and $\omega_{t} \sim N\left(0, \sigma^{2}\right)$

- Lets find an expression for the ACF, ρ_{k}
- For lag $k=0$

$$
\gamma_{0}=\operatorname{Var}\left(X_{t}\right)=\operatorname{Var}\left(\omega_{t}\right)+\theta^{2} \operatorname{Var}\left(\omega_{t-1}\right)=\sigma^{2}\left(1+\theta^{2}\right)
$$

- For lag 1, consider the product $X_{t} X_{t-1}$. Using the MA(1) equation, we obtain

$$
\begin{aligned}
X_{t} X_{t-1} & =\left(\omega_{t}+\theta \omega_{t-1}\right)\left(\omega_{t-1}+\theta \omega_{t-2}\right) \\
& =\omega_{t} \omega_{t-1}+\theta \omega_{t-1}^{2}+\theta \omega_{t-2} \omega_{t}+\theta^{2} \omega_{t-1} \omega_{t-2}
\end{aligned}
$$

- If we take expected value at both sides of the equation,

$$
E\left(X_{t} X_{t-1}\right)=\gamma_{1}=\theta \sigma^{2}
$$

- Additionally for any value of k

$$
X_{t} X_{t-k}=\omega_{t} \omega_{t-k}+\theta \omega_{t} \omega_{t-k-1}+\theta \omega_{t-1} \omega_{t-k}+\theta^{2} \omega_{t-1} \omega_{t-k-1}
$$

- Then, if $k>1, E\left(X_{t} X_{t-k}\right)=\gamma_{k}=0$
- The ACF of an MA(1) is given by

$$
\rho_{k}= \begin{cases}\theta /\left(1+\theta^{2}\right) ; & k=1 \\ 0 & k>1\end{cases}
$$

- Using $\rho_{k}=0$ for $k>1$, we can show that the PACF

$$
P_{k k}=\phi_{k k}=\frac{\theta^{k}\left(1-\theta^{2}\right)}{1-\theta^{2(k+1)}} \quad k \geq 1
$$

- Contrary to its ACF, which cuts off after lag 1, the PACF of an MA(1) model decays exponentially.
- For a general MA (q) process, the ACF "cuts down" to zero after $\operatorname{lag} q$ and the PACF will have exponential behavior depending on the characteristic roots of $\Theta(B)=\left(1+\theta_{1} B+\theta_{2} B^{2} \ldots+\theta_{q} B^{q}\right)=0$.
- Instead of trying to find equations in the general case, we will look at somes examples using simulation.
- Firstly, we consider an MA(1) process with parameters $\theta=0.9$ and $\theta=-0.9$.
- Then, we consider an MA(2) process with parameters ($\theta_{1}=0.85, \theta_{2}=0.5$) and with parameters $\left(\theta_{1}=-0.85, \theta_{2}=-0.5\right)$
- Finally, we consider an MA(4) process with parameters $\left(\theta_{1}=0.9, \theta_{2}=-0.8, \theta_{3}=0.75, \theta_{4}=-0.4\right)$
- Again, we are using this function arima.sim $\mathrm{xt}=$ arima.sim(1000,model=list(ma=0.9))

Series xt

Series xt

MA(2) process with Theta1 $=.85$ and Theta2=. 5

Series xt

Series xt

Series xt

- To obtain the ACF and PACF for an $\operatorname{ARMA}(p, q)$ process, we need to follow the same strategy used to obtain the ACFs and PACFs for AR and MA models.
- Recall that an $\operatorname{ARMA}(p, q)$ process is defined by the equation,

$$
X_{t}=\phi_{1} X_{t-1}+\ldots+\phi_{p} X_{t-p}+\omega_{t}+\theta_{1} \omega_{t-1}+\ldots+\theta_{q} \omega_{t-q}
$$

- As before, if we multiply by X_{t-k} both sides of the equation and take "expected value", we obtain

$$
\begin{aligned}
\gamma_{k}= & \phi_{1} \gamma_{k-1}+\ldots+\phi_{p} \gamma_{k-p}+E\left(X_{t-k} \omega_{t}\right)-\theta_{1} E\left(X_{t-k} \omega_{t-1}\right)- \\
& \ldots-\theta_{q} E\left(X_{t-k} \omega_{t-q}\right)
\end{aligned}
$$

- Since

$$
E\left(X_{t-k} \omega_{t-i}\right)=0 ; \quad k>i
$$

we obtain that

$$
\gamma_{k}=\phi_{1} \gamma_{k-1}+\ldots+\phi_{p} \gamma_{k-p} ; \quad k \geq q+1
$$

- We know (divide by γ_{0}) that this equivalent to

$$
\rho_{k}=\phi_{1} \rho_{k-1}+\ldots+\phi_{p} \rho_{k-p} ; k \geq q+1
$$

which gives the Yule-Walker equations but with the restriction $k \geq q+1$.

- For a lag $k \geq q+1$, the autocorrelation function of an ARMA (p, q) process has a similar behavior to the ACF of a pure $\mathrm{AR}(p)$ process.
- However, the first q autocorrelations $\rho_{1}, \rho_{2}, \ldots \rho_{q}$ depend on both autoregressive and moving average parameters.
- The PACF for an ARMA (p, q) is complicated and usually not needed.
- This PACF will have a similar behavior as the PACF of a MA (q) process.
- Lets look at some examples for simulated data of an ARMA $(1,1)$ processes.
- The examples consider 1000 simulations. The AR coefficient is 0.95 (0.6) and MA coefficient is 0.5 .
- We will also consider an ARMA $(2,1)$ process where the AR part is built with $r=0.95 \omega=0.42$ and the MA parameter is $\theta=0.7$.
- Finally, we will show an ARMA(10,2) process where AR part is defiened with 10 complex reciprocal roots.

Series xt

Series \mathbf{x}

Series xt

Series xt

Series xt

Series xt

