
STA 581: Introduction to Time Series. Fall 2006

Instructor: Gabriel Huerta, MWF 11-11:50am HUM 428.

• Definition of a time series.

• Difference between time series and other statistical

approaches.

• Main goals of a time series analysis.

• Time series plots.

* Material relates to Shumway and Stoffer, sections 1.1-1.3
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Time Series (T.S.)

• A stochastic process or a sequence of random variables

{Xt; t ∈ S}; where S is some set of indices.

• The value t usually represents time (hour, month, year ).

Time points t1, t2, . . . , tn

• Typically S = {0,±1,±2, . . .},

S = {1990, 1991, 1992, 1993, }

• We are only going to deal with discrete time processes: S

is finite or a countable set.
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• Samples in T.S.: A realization of the process Xt denoted

by {xt; t ∈ I} where I is a finite set.

• Examples of I in a discrete time case:

I = {1, 2, 3, 4, . . . , n}

I = {1980, 1981, 1985, 1986, . . . , 1995}

I = {1/80, 2/80, . . . , 12/80, 1/81, 2/81, . . . , 12/81}

• Equally spaced time series are the most common in

practice. This is the case of I = {t1, t2, t3, . . . , tn} where

∆ = ti − ti−1 with ∆ a constant
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Difference with traditional Statistical Inference (STA

553)

• The data is assumed to be an i.i.d process (random

sample). Example: X1,X2, . . . ,Xn are i.i.d. and

Xi ∼ N(µ, σ2).

• In T.S. we are relaxing this assumption and wish to

model the dependency among observations.

• For this purpose, we will discuss the concept of

autocorrelation.
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Main goals in Time Series

• Based on the data, we wish to characterize

E(Xt) = µt (mean or trend)

V (Xt) = σ2

t
(variance or volatility)

Cov(Xt,Xs) = E(Xt − µt)(Xs − µs) (autocovariance)

• Determine the periodicity or cycles of the observed

process (spectral/periodogram analysis).

• Decompose time series into latent processes.

Xt = at + St + νt

where at represents the trend; St represents the

seasonality; νt represents noise.
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• Formulate and estimate a parametric model for Xt (need

to propose methods of estimation and model diagnostics).

• This point is related to the estimation of autoregressive

(AR) or ARMA models. (Box and Jenkins methodology).

• Estimation of Missing values (fill“gaps”). Suppose we

observe x1, x2, . . . , x200; 200 observations but x100 was

not observed. We wish an estimate ˆx100 for X100.

• Prediction or Forecasting (“would like to know what a

future value is”). Suppose our data is x1, x2, . . . , x200, we

wish to forecast the next 10 values, x201, x202, . . . , x210.

In this case, our forecasting horizon is 10.

6



Time Series plot:

• The traditional display for data in time series is to plot

each value xt versus each time t.

• The first step on any time series analysis.

• Need to be carefull about the labels, scales and the pixels

chosen to produce the graph.

• The plot allows to find stationarity or non-stationarity,

cycles, trends, outliers or interventions.

• It will assist in the formulation of a parametric model.

• Many examples will be presented along the course.
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US Industrial Production Index

• 546 monthly observations.

• The data starts in January 1947 and ends in December

12.

• With more data it is more sensible to look into a

long-term behavior.

• The data has been seasonally adjusted (periodicity has

been removed).

• A “positive slope” trend is present in the data.

• Can this data be related to a deterministic regression line

or to a purely stochastic mechanism?
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Brazilian Industrial Production Index

• 215 monthly observations.

• The data starts in February 1980 and ends in December

1997.

• Data exhibits “ups” and “downs”.

• Data exhibits a periodic or cyclical pattern.

• The process generating the observations appears to be

non-stationary.

• The behavior shown by this data is typical of

econometric time series.
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R Code for Brazilian IPI example

Go to http://www.stat.unm.edu/∼ghuerta/tseries/braipi and

save data into your directory

> y=read.table(‘‘/mydata/braipi’’,skip=1)

# reading data

> x=ts(y[,2],start=c(1980,2),frequency=12)

# creating a ts object

> ts.plot(x,xlab=’’time’’,ylab=’’Brazilian IPI’’)
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Standard and Poor’s 500

• Financial index.

• The data consists of excess returns.

Xt = log(st) − log(st−1)

• The mean level of the process seems constant.

• There are sections of the data with explosive behavior

(high volatility).

• The data corresponds to a non-stationary process.

• The variance (or volatility) is not constant in time.

• No linear time series model will be available for this data.
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R code for SP-500 data example

If we have the values of st as a vector-file stored in sp-500.dat.

> x=scan(‘‘/mydata/sp-500.dat’’)

# Read in data

> y=diff(log(x),lag=1)

# First difference of log-data

> ts.plot(y,xlim=’’time’’,ylab=’’returns’’)
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Sea Level Pressures at Darwin

• Monthly values starting from 1882 and ending in 1998.

• This series is a key indicator for climatological studies.

• Expectedly, there is a strong seasonality in this data.

• The first plot is the actual data points. No lines are

connected between points.

• Second plot is the standard time series plot with points

connected by lines. The seasonality is now clear.

• There is no obvious change in mean so the process seems

stationary.

• The third graph includes plots for observations 1-400,

401-801.
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Some R code

x <- scan("/mydata/darwin1")

# Reading Darwin data

darw <- ts(x,start=c(1882,1),frequency=12)

# Transforming into a time series object..

plot(darw,ylab=’’sea level pressure’’)

title(‘‘Time Series Plot of Darwin Data’’)

# Produces the time series plot.

par(mfrow=c(2,1))

plot(darw[1:400],ylab="sea level pressure",type="l")

title("Observations 1-400")

plot(darw[801:1200],ylab="sea level pressure",type="l")

title("Observations 801-1200")

The darwin data and others are available from the class web page.
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White Noise Process

• The ω′

ts are iid and each follows a N(0, σ2
ω) distribution.

• No time correlation to model.

• It is a stationary process.

• The time series plot will not show any patterns or any

changes in time.

• The figure in the next page, shows a realization of size

n = 500 of a white noise process with σ2
ω = 1. (N(0,1)).
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R code for White noise and Moving Average process

(Ex 1.9 in text)

> w=rnorm(500,0,1) # 500 N(0,1) variates

> v=filter(w,sides=2, rep(1,3)/3) # moving average

> par(mfrow=c(2,1))

> plot.ts(w)

> plot.ts(v)
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